Volume 43 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WANG Qinghua, ZHANG Yuanyuan, GAO Meng, XU Feng, GUO Weiguo. A method for synchronous shock calibration of triaxial accelerometers based on vector decomposition[J]. Explosion And Shock Waves, 2023, 43(7): 074101. doi: 10.11883/bzycj-2023-0007
Citation: WANG Qinghua, ZHANG Yuanyuan, GAO Meng, XU Feng, GUO Weiguo. A method for synchronous shock calibration of triaxial accelerometers based on vector decomposition[J]. Explosion And Shock Waves, 2023, 43(7): 074101. doi: 10.11883/bzycj-2023-0007

A method for synchronous shock calibration of triaxial accelerometers based on vector decomposition

doi: 10.11883/bzycj-2023-0007
  • Received Date: 2023-01-05
  • Rev Recd Date: 2023-04-19
  • Available Online: 2023-05-05
  • Publish Date: 2023-07-05
  • The triaxial accelerometer can simultaneously detect and measure shock loads along the three coordinate axes in the three-dimensional space. Therefore, it has a wide range of applications in the fields of spatial vibration test, spatial impact test, and so on. Before being put into practical use, triaxial accelerometers must be calibrated for their sensitivity coefficients to ensure the validity and accuracy of measurements. Unlike the calibration of single-axis accelerometers, there is a major difficulty in the calibration technologies of the triaxial accelerometers, that is, how to realize the excitation of three-dimensional shock loads synchronously, since the pulse width of the shock loads are usually as short as a few milliseconds. On the other hand, tracing and measuring the acceleration excited during shock process is also the key to the shock calibration of accelerometers. In order to address the aforementioned problems, a drop table equipped with a shock amplifier was used to excite acceleration loads vertically upward. Then, with the help of an anvil which has a bevel, the vertical acceleration excited on shock amplifier was decomposed to each sensitive axis of the triaxial accelerometer based the principle of vector decomposition. By means of this approach, synchronous shock loading of the triaxial accelerometer was then realized. High-speed camera and image processing based on MATLAB were used to trace and measure the acceleration excited in the synchronous shock calibration of triaxial accelerometers. Experiments were conducted to verify the effectiveness of the motion measurement method based on high-speed camera and MATLAB image processing. The sensitivity matrix of the triaxial accelerometer, which takes into consideration both the main sensitivity coefficients and the coupling sensitivity coefficients, was solved using the least-square method. At last, the measurement accuracy of the accelerometer calibrated using the synchronous method was compared with the measurement accuracy of the accelerometer calibrated using the conventional asynchronous method. The research results indicate that the conventional drop table could excite a wide range (102g~104g) of acceleration by equipping a shock amplifier. In addition, the motion measurement method based on high-speed camera and MATLAB image processing is valid in acceleration traceability or measurement in the shock calibration of accelerometer. Furthermore, compared to the measurement accuracy of the accelerometer calibrated by the asynchronous method, the measurement accuracy of the triaxial accelerometer could be guaranteed and improved by using the synchronous method. Therefore, in engineering, the triaxial accelerometer ought to be calibrated using synchronous methods rather than asynchronous methods to guarantee the validity and accuracy of measurements.
  • loading
  • [1]
    周露, 宋浩兰, 白静蕾, 等. 基于三轴加速度计和SVM算法的校园运动识别 [J]. 电子设计工程, 2022, 30(21): 80–84. DOI: 10.14022/j.issn1674-6236.2022.21.017.

    ZHOU L, SONG H L, BAI J L, et al. Campus movement recognition based on three-axis accelerometer and SVM algorithm [J]. Electronic Design Engineering, 2022, 30(21): 80–84. DOI: 10.14022/j.issn1674-6236.2022.21.017.
    [2]
    高鹏, 杨硕, 高勇, 等. 基于三轴加速度计的振动筛运动状态采集装置的设计 [J]. 选煤技术, 2021(2): 88–92. DOI: 10.16447/j.cnki.cpt.2021.02.017.

    GAO P, YANG S, GAO Y, et al. Design of the 3-axis accelerometer-based vibrating screen motion state information acquisition device [J]. Coal Preparation Technology, 2021(2): 88–92. DOI: 10.16447/j.cnki.cpt.2021.02.017.
    [3]
    何青, 杜冬梅, 张志, 等. 三轴加速度计在水下结构振动测试中的应用 [J]. 微纳电子技术, 2007, 44(7): 159–161. DOI: 10.13250/j.cnki.wndz.2007.z1.044.

    HE Q, DU D M, ZHANG Z, et al. Application of vibration measurement for underwater structure [J]. Micronanoelectronic Technology, 2007, 44(7): 159–161. DOI: 10.13250/j.cnki.wndz.2007.z1.044.
    [4]
    高婵, 杜国平. 基于三轴加速度计的桥涵防碰撞报警装置的设计 [J]. 传感技术学报, 2014, 27(9): 1178–1182.

    GAO C, DU G P. Design of bridges and culverts anti-collision alarm device based on three-axis accelerometer [J]. Chinese Journal of Sensors and Actuators, 2014, 27(9): 1178–1182.
    [5]
    范成叶, 李杰, 景增增, 等. 旋转弹用三轴加速度计安装位置误差标定补偿技术 [J]. 传感技术学报, 2013, 26(10): 1352–1356. DOI: 10.3969/j.issn.1004-1699.2013.10.007.

    FAN C Y, LI J, JING Z Z, et al. Calibration and compensation method on installation position error of tri-axis accelerometer units used in spinning projectiles [J]. Chinese Journal of Sensors and Actuators, 2013, 26(10): 1352–1356. DOI: 10.3969/j.issn.1004-1699.2013.10.007.
    [6]
    黎渊, 董培涛, 吴学忠, 等. 三轴高g加速度计的测试方法及实验研究 [J]. 传感技术学报, 2008, 21(11): 1844–1847. DOI: 10.3969/j.issn.1004-1699.2008.11.007.

    LI Y, DONG P T, WU X Z, et al. Study on characterization of a triaxial high-g accelerometer [J]. Chinese Journal of Sensors and Actuators, 2008, 21(11): 1844–1847. DOI: 10.3969/j.issn.1004-1699.2008.11.007.
    [7]
    RIPPER G P, DIAS R S, GARCIA G A. Primary accelerometer calibration problems due to vibration exciters [J]. Measurement, 2009, 42(9): 1363–1369. DOI: 10.1016/j.measurement.2009.05.002.
    [8]
    OOTA A, USUDA T, NOZATO H. Correction and evaluation of the effect due to parasitic motion on primary accelerometer calibration [J]. Measurement, 2010, 43(5): 719–725. DOI: 10.1016/j.measurement.2010.02.005.
    [9]
    陈德英, 茅盘松, 张旭, 等. 一种压阻式高g值加速度传感器 [J]. 固体电子学研究与进展, 2004, 24(3): 318–321, 349. DOI: 10.3969/j.issn.1000-3819.2004.03.010.

    CHEN D Y, MAO P S, ZHANG X, et al. A piezoresistive accelerometer with high-g value [J]. Research & Process of SSE, 2004, 24(3): 318–321, 349. DOI: 10.3969/j.issn.1000-3819.2004.03.010.
    [10]
    李玉龙, 郭伟国, 贾德新, 等. 高g 值加速度传感器校准系统的研究 [J]. 爆炸与冲击, 1997, 17(1): 90–96.

    LI Y L, GUO W G, JIA D X, et al. An equipment for calibrating high shock acceleration sensors [J]. Explosion and Shock Waves, 1997, 17(1): 90–96.
    [11]
    李功, 焦新泉, 袁强. MEMS高g值复合量程开关设计 [J]. 传感器与微系统, 2016, 35(1): 82–84, 87. DOI: 10.13873/J.1000-9787(2016)01-0082-03.

    LI G, JIAO X Q, YUAN Q. Design of MEMS high-g composite range switch [J]. Transducer and Microsystem Technologies, 2016, 35(1): 82–84, 87. DOI: 10.13873/J.1000-9787(2016)01-0082-03.
    [12]
    YUAN K B, GUO W G, SU Y, et al. Study on several key problems in shock calibration of high-g accelerometers using Hopkinson bar [J]. Sensors and Actuators A: Physical, 2017, 258: 1–13. DOI: 10.1016/j.sna.2017.02.017.
    [13]
    WON S H P, GOLNARAGHI F. A triaxial accelerometer calibration method using a mathematical model [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(8): 2144–2153. DOI: 10.1109/TIM.2009.2031849.
    [14]
    SIPOS M, PACES P, ROHAC J, et al. Analyses of triaxial accelerometer calibration algorithms [J]. IEEE Sensors Journal, 2012, 12(5): 1157–1165. DOI: 10.1109/JSEN.2011.2167319.
    [15]
    BERAVS T, PODOBNIK J, MUNIH M. Three-axial accelerometer calibration using Kalman filter covariance matrix for online estimation of optimal sensor orientation [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(9): 2501–2511. DOI: 10.1109/TIM.2012.2187360.
    [16]
    UMEDA A, ONOE M, SAKATA K, et al. Calibration of three-axis accelerometers using a three-dimensional vibration generator and three laser interferometers [J]. Sensors & Actuators A: Physical, 2004, 114(1): 93–101. DOI: 10.1016/j.sna.2004.03.011.
    [17]
    张俊, 熊晓燕, 姚爱英. 可调节式三轴标定台和解耦的设计与研究 [J]. 机床与液压, 2017, 45(3): 159–162. DOI: 10.3969/j.issn.1001-3881.2017.03.036.

    ZHANG J, XIONG X Y, YAO A Y, et al. Design and research on an adjustable three axis calibration and decoupling [J]. Machine Tool & Hydraulics, 2017, 45(3): 159–162. DOI: 10.3969/j.issn.1001-3881.2017.03.036.
    [18]
    曾国英, 刘继光, 夏季. 三维振动台的仿真设计 [J]. 机械设计, 2005, 22(4): 46–48. DOI: 10.13841/j.cnki.jxsj.2005.04.016.

    ZENG G Y, LIU J G, XIA J. Emulation design of 3D vibration table [J]. Journal of Machine Design, 2005, 22(4): 46–48. DOI: 10.13841/j.cnki.jxsj.2005.04.016.
    [19]
    郑建洲, 武元桢. 平面静压式传振解耦装置及三轴向振动复合试验台: CN102865987B [P]. 2015-01-07.
    [20]
    ISO. Methods for the calibration of vibration and shock transducers: Part 11: primary vibration calibration by laser interferometry: ISO16063-11 [S]. 1999.
    [21]
    ISO. Methods for the calibration of vibration and shock transducers: Part 13: primary shock calibration using laser interferometry: ISO 16063-13 [S]. 2001.
    [22]
    YUE Z W, SONG Y, LI P H, et al. Applications of digital image correlation (DIC) and the strain gage method for measuring dynamic mode Ⅰ fracture parameters of the white marble specimen [J]. Rock Mechanics and Rock Engineering, 2019, 52: 4203–4216. DOI: 10.1007/s00603-019-01830-8.
    [23]
    GAO G, YAO W, XIA K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method [J]. Engineering Fracture Mechanics, 2015, 138: 146–155. DOI: 10.1016/j.engfracmech.2015.02.021.
    [24]
    XING H Z, WANG M Y, JU M H, et al. Measurement of ejection velocity of rock fragments under dynamic compression and insight into energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104992. DOI: 10.1016/j.ijrmms.2021.104992.
    [25]
    余旭东, 吴斌, 徐超, 等. 飞行器结构动力学[M]. 西安: 西北工业大学出版社, 2012: 19–48.
    [26]
    BELKHOUCHE F. Robust calibration of MEMS accelerometers in the presence of outliers [J]. IEEE Sensors Journal, 2022, 22(10): 9500–9508. DOI: 10.1109/JSEN.2022.3163964.
    [27]
    WANG Q H, XU F, GUO W G, et al. New technique for impact calibration of wide-range triaxial force transducer using Hopkinson bar [J]. Sensors, 2022, 22(13): 4885.DOI. DOI: 10.3390/s22134885.
    [28]
    CHEN X Y, ZHANG X T, ZHU M, et al. A novel calibration method for tri-axial magnetometers based on an expanded error model and a two-step total least square algorithm [J]. Mobile Networks and Applications, 2022, 27(2): 794–805. DOI: 10.1007/s11036-021-01898-z.
    [29]
    ISO. Methods for the calibration of vibration and shock transducers: Part 22: shock calibration by comparison to a reference transducer: amendment 1: ISO 16063-22:2005/Amd 1 [S]. 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (156) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return