Volume 44 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
JI Yuguo, ZHANG Guokai, LI Gan, DENG Shuxin, YAO Jian, LI Jie, WANG Mingyang, HE Yong. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors[J]. Explosion And Shock Waves, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011
Citation: JI Yuguo, ZHANG Guokai, LI Gan, DENG Shuxin, YAO Jian, LI Jie, WANG Mingyang, HE Yong. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors[J]. Explosion And Shock Waves, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011

Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors

doi: 10.11883/bzycj-2023-0011
  • Received Date: 2023-01-09
  • Rev Recd Date: 2023-11-23
  • Available Online: 2024-01-18
  • Publish Date: 2024-03-14
  • Multiple damage effects can be generated when thermobaric explosives (TBX) detonated inside a tunnel, posing serious threats to people and equipment. Based on the explosion tests with different explosive masses, the explosion characteristics of the TBX detonated inside a tunnel are investigated. The thermal effects of fireball and the propagation law of the shock wave inside the tunnel are analyzed, the reduction degree of oxygen concentration is elucidated as well. Besides, the constraint effect of the tunnel on the afterburning of aluminum powders and the explosive mass conditions for the formation of afterburning effects at high intensity are discussed. It is shown that the radiation brightness of the fireball induced by the TBX is higher than TNT, and the temperature peak of TBX fireball is 1.3 times higher than that of TNT. During the process of fireball evolution, the temperature peak of the TBX fireball in the afterburning stage can increase by more than 10% compared to the temperature peak at the moment when the fireball is just stable. Regarding the propagation law of shock waves, the TNT equivalent coefficients of the overpressure peak and positive pressure time are approximately 1.4 and 1.65, respectively. In addition, the compressive waves generated by the afterburning of aluminum powders can provide various supplementary effects on the propagation of shock wave. The compressive wave with quickly rising process can be benefit for the increase in the pressure peak of the shock wave. In terms of the compressive wave with long duration and slow rising process, it can limit the attenuation of the shock wave and can extend the overall positive pressure time. Due to the constraint effect of the tunnel, the TBX fireball could interact with tunnel walls. As a consequence, the combustion intensity of aluminum powders will be enhanced. When the ratio between the cubic root of the TBX mass and the equivalent tunnel diameter is greater than 0.28 kg1/3/m, the afterburning effect at high intensity will emerge.
  • loading
  • [1]
    杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
    [2]
    BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
    [3]
    UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003.
    [4]
    胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.

    HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.
    [5]
    ARNOLD W, ROTTENKOLBER E. Thermobaric charges: modeling and testing [C]//Proceedings of the 38th International Annual Conference of ICT. Karlsruhe, Germany, 2007: V02.
    [6]
    HAHMA A, PALOVUORI K, ROMU H. Experimental studies on metal fueled thermobaric explosives [C]//Proceedings of the 35th International Annual Conference of ICT. Karlsruhe, Germany: ICT, 2006.
    [7]
    MOHAMED A K, MOSTAFA H E, ELBASUNEY S. Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation [J]. Journal of Hazardous Materials, 2016, 301: 492–503. DOI: 10.1016/j.jhazmat.2015.09.019.
    [8]
    赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律 [J]. 含能材料, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.

    ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
    [9]
    ZHANG F, ANDERSON J, YOSHINAKA A. Post-detonation energy release from TNT-aluminum explosives [J]. AIP Conference Proceedings, 2007, 955(1): 885–888. DOI: 10.1063/1.2833268.
    [10]
    PEUKER J M, KRIER H, GLUMAC N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2205–2212. DOI: 10.1016/j.proci.2012.05.069.
    [11]
    KIM C K, LAI M C, ZHANG Z C, et al. Modeling and numerical simulation of afterburning of thermobaric explosives in a closed chamber [J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(7): 979–986. DOI: 10.1007/s12541-017-0115-3.
    [12]
    李根, 卢芳云, 李翔宇, 等. 基于气固两相反应流的温压炸药能量释放规律数值模拟及实验验证 [J]. 火炸药学报, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.

    LI G, LU F Y, LI X Y, et al. Numerical simulation and experimental verification on the energy release law of thermostatic explosive based on gas-solid two-phase reaction flow [J]. Chinese Journal of Explosives & Propellants, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.
    [13]
    耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.

    GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
    [14]
    苟兵旺, 李芝绒, 闫潇敏, 等. 复杂坑道内温压炸药冲击波效应试验研究 [J]. 火工品, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.

    GOU B W, LI Z R, YAN X M, et al. Experimental study on shock wave effects of thermo-baric explosive in complex tunnel [J]. Initiators & Pyrotechnics, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.
    [15]
    茅靳丰, 陈飞, 侯普民. 温压炸药坑道口部爆炸冲击波毁伤效应研究 [J]. 力学季刊, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.

    MAO J F, CHEN F, HOU P M. Study on shock wave damage effects of thermobaric explosive explosion in tunnel entrance [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
    [16]
    孔霖, 苏健军, 李芝绒, 等. 不同装药坑道内爆炸冲击波传播规律的试验研究 [J]. 火工品, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.

    KONG L, SU J J, LI Z R, et al. Test study on explosion shock wave propagation of different explosives inside tunnels [J]. Initiators & Pyrotechnics, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.
    [17]
    李世民, 李晓军, 李洪鑫. 温压炸药坑道内爆炸冲击波的数值模拟研究 [J]. 应用力学学报, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.

    LI S M, LI X J, LI H X. Numerical simulation study of airblast of thermobaric explosive explosion in tunnel [J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.
    [18]
    徐利娜, 雍顺宁, 王凤丹, 等. 直坑道内爆炸冲击波超压传播规律研究 [J]. 测试技术学报, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.

    XU L N, YONG S N, WANG F D, et al. Study of blast wave overpressure propagation inside straight tunnel [J]. Journal of Test and Measurement Technology, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.
    [19]
    田培培. 温压药剂爆炸高温场特性红外测试技术研究 [D]. 太原: 中北大学, 2016.

    TIAN P P. The research on characteristics of high temperature explosion field of thermobaric explosive with infrared testing technology [D]. Taiyuan: North University of China, 2016.
    [20]
    许仁翰, 周钇捷, 狄长安. 基于高速成像的爆炸温度场测试方法 [J]. 兵工学报, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.

    XU R H, ZHOU Y J, DI C A. A temperature measuring method for explosive temperature field based on high-speed imaging technology [J]. Acta Armamentarii, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.
    [21]
    仲倩, 王伯良, 王凤丹, 等. 温压炸药爆炸过程的瞬态温度 [J]. 含能材料, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.

    ZHONG Q, WANG B L, WANG F D, et al. Explosion temperature of thermobaric explosive [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.
    [22]
    LIU Z P, LIU S H, ZHAO J X, et al. A transient heat flux sensor based on the transverse Seebeck effect of single crystal Bi2Te3 [J]. Measurement, 2022, 198: 111419. DOI: 10.1016/j.measurement.2022.111419.
    [23]
    纪玉国, 张国凯, 李干, 等. 坑道口部温压炸药爆炸热效应与冲击波传播规律实验研究 [J]. 南京理工大学学报, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.

    JI Y G, ZHANG G K, LI G, et al. Experimental study on thermal effect and shock wave propagation of thermobaric explosives at tunnel entrance [J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.
    [24]
    LV S S, ZHANG J Q, NI H J, et al. Research status and progress of oxygen sensor [J]. Journal of Physics: Conference Series, 2019, 1345(3): 032029. DOI: 10.1088/1742-6596/1345/3/032029.
    [25]
    奥尔连科Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.

    OPЛEHKO Л П. Explosion physics [M]. SUN C W, trans. Beijing: Science Press, 2011.
    [26]
    肖伟. 助燃剂对含铝炸药爆炸特性的影响及其释能规律研究 [D]. 南京: 南京理工大学, 2021.
    [27]
    陈海天, 李秀地, 郑颖人. 内爆炸坑道中冲击波冲量试验 [J]. 后勤工程学院学报, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.

    CHEN H T, LI X D, ZHENG Y R. Scale model tests to determine in-tunnel blast impulse from he-charges inside the tunnel entrance [J]. Journal of Logistical Engineering University, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.
    [28]
    丁彤, 裴红波, 郭文灿, 等. RDX基含铝炸药爆轰波结构实验研究 [J]. 爆炸与冲击, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.

    DING T, PEI H B, GUO W C, et al. Experimental study on detonation wave profiles in RDX-based aluminized explosives [J]. Explosion and Shock Waves, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.
    [29]
    KEELEY J E. Fire intensity, fire severity and burn severity: a brief review and suggested usage [J]. International Journal of Wildland Fire, 2009, 18(1): 116. DOI: 10.1071/WF07049.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(1)

    Article Metrics

    Article views (139) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return