Volume 43 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
WU Weichao, XIA Liu, PAN Aigang, WANG Yafei, WANG Qiang. Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating[J]. Explosion And Shock Waves, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025
Citation: WU Weichao, XIA Liu, PAN Aigang, WANG Yafei, WANG Qiang. Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating[J]. Explosion And Shock Waves, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025

Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating

doi: 10.11883/bzycj-2023-0025
  • Received Date: 2023-01-31
  • Rev Recd Date: 2023-09-20
  • Available Online: 2023-09-20
  • Publish Date: 2023-12-12
  • To investigate the influence of damage characteristics, dynamic response, and failure mechanism on reinforced concrete (RC) square columns under multi-point simultaneous initiation, a series of experiments were conducted on RC square columns subjected to synchronous contact explosive loading using single, double, and four-point charges. Furthermore, LS-DYNA was used to analyze the damage characteristics and stress evolution process based on the experimental results obtained from the explosive loading. The analysis results indicate that the damage effect of RC square columns relies on both the number of detonation points and the placement position, given the same total mass of explosives. Multi-point simultaneous initiation causes superior damage to RC square columns with both crushed and punched damage, as compared to single-point explosions. Additionally, the degree of damage and acceleration response of the RC square columns is the highest at the condition of four-point charges on adjacent sides. The effectiveness of enhancing the damaging effect on RC square columns is directly correlated with the increase in the number of detonation points. The RC square column initially enters a high-stress state throughout the entire section, and in the condition of four-point charges placed on all four sides, there are four corners where the concrete stress is concentrated, leading to enhanced damage effects. During single-point initiation, the stress inside the concrete at the measuring point decreases as the distance from the center of the explosion increases. However, during multi-point initiation, when multiple explosion stress waves are combined within the cross-section of the RC square column, the stress at the central concrete significantly increases. Taking into account the spatial coupling and superposition of stress waves, the concrete's peak stress at the center of the RC square column section increased significantly under the explosive conditions of four-point charges on adjacent sides. Specifically, the peak stress reached 37.3 MPa, with stress increases of 3.82 times, 1.21 times, and 0.67 times compared to the other three explosion conditions. The increase in stress coupling is the primary factor contributing to the extensive damage observed in the RC square column.
  • loading
  • [1]
    徐露萍, 李邦贵, 胡米. 国外高效毁伤技术简析 [J]. 飞航导弹, 2010(12): 71–75. DOI: 10.16338/j.issn.1009-1319.2010.12.013.

    XU L P, LI B G, HU M. A brief analysis of foreign high-efficiency destruction technologies [J]. Aerodynamic Missile Journal, 2010(12): 71–75. DOI: 10.16338/j.issn.1009-1319.2010.12.013.
    [2]
    陈伟, 陈瑶. 多强度点火具的设计及试验研究 [J]. 军械工程学院学报, 2016, 28(3): 35–37. DOI: 10.3969/j.issn.1008-2956.2016.03.007.

    CHEN W, CHEN Y. Study on the design of multi-strength igniter in warhead and its testing [J]. Journal of Ordnance Engineering College, 2016, 28(3): 35–37. DOI: 10.3969/j.issn.1008-2956.2016.03.007.
    [3]
    张树凯, 王科伟, 谢佳良, 等. 线内非同步起爆对战斗部毁伤效能的影响 [J]. 火炸药学报, 2022, 45(1): 73–80. DOI: 10.14077/j.issn.1007-7812.202109013.

    ZHANG S K, WANG K W, XIE J L, et al. Effect of in-line asynchronous initiation on warhead damage efficiency [J]. Chinese Journal of Explosives and Propellants, 2022, 45(1): 73–80. DOI: 10.14077/j.issn.1007-7812.202109013.
    [4]
    郭美芳, 范宁军. 多模式战斗部与起爆技术分析研究 [J]. 探测与控制学报, 2005, 27(1): 31–34,61. DOI: 10.3969/j.issn.1008-1194.2005.01.009.

    GUO M F, FAN N J. The study on a multimode warhead and the initiation technology [J]. Journal of Detection and Control, 2005, 27(1): 31–34,61. DOI: 10.3969/j.issn.1008-1194.2005.01.009.
    [5]
    李良琦, 李晓红, 高彬彬. 国外高效毁伤战斗部弹体关键制造技术综述 [J]. 国防制造技术, 2013(5): 22–27. DOI: 10.3969/j.issn.1674-5574.2013.05.007.

    LI L Q, LI X H, GAO B B. Key manufacturing technologies of foreign high efficiency damage warhead casing [J]. Defense Manufacturing Technology, 2013(5): 22–27. DOI: 10.3969/j.issn.1674-5574.2013.05.007.
    [6]
    沈慧铭. 多点起爆方式作用机理及其在战斗部中的应用研究 [D]. 南京: 南京理工大学, 2018.

    SHEN H M. Research on action mechanism of multi-point initiation way and its application in warhead [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2018.
    [7]
    李营, 吴卫国, 朱海清, 等. 爆炸冲击波与破片对RC桥的耦合毁伤研究 [J]. 爆破, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.

    LI Y, WU W G, ZHU H Q, et al. Damage characteristics of RC bridge under combined effects of blast shock wave and fragments loading [J]. Blasting, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.
    [8]
    闫仁宝. 半封闭空间内爆轰波与电弧相互耦合特性及应用研究 [D]. 南宁: 广西大学, 2014. DOI: 10.7666/d.D523740.

    YAN R B. Research on characteristics and application of explosion shock waves with mutual coupling arc in semi-closed space [D]. Nanning, Guangxi, China: Guangxi University, 2014. DOI: 10.7666/d.D523740.
    [9]
    PHILLIPS J S, BRATTON J L. Ground shock analysis of the multiple burst experiments: ADA 088510 [R]. Springfield: NITS, 1978.
    [10]
    RUETENIK J R, HOBBS N P, SMILEY R F. Calculation of multiple burst interactions for six simultaneous explosions of 120 Ton ANFO charges: ADA 091978 [R]. Springfield: NITS, 1979.
    [11]
    KMETYK L N, YARRINGTON P. Ground shock from multiple earth penetrator bursts: effects for hexagonal weapon arrays: SAND 90-0485 [R]. Albuquerque: Sandia National Lobs, 1990.
    [12]
    柴晨, 白春华, 赵星宇, 等. 多点爆轰超压场仿真计算 [J]. 兵器装备工程学报, 2022, 43(7): 128–133,184. DOI: 10.11809/bqzbgcxb2022.07.019.

    CHAI C, BAI C H, ZHAO X Y, et al. Simulation calculation of multipoint detonation overpressure field [J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 128–133,184. DOI: 10.11809/bqzbgcxb2022.07.019.
    [13]
    胡宏伟, 王健, 冯海云, 等. 多点水中阵列爆炸冲击波的传播特性 [J]. 含能材料, 2021, 29(5): 370–380. DOI: 10.11943/CJEM2021026.

    HU H W, WANG J, FENG H Y, et al. The propagation characteristics of shock wave for muti-charge underwater array explosion [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 370–380. DOI: 10.11943/CJEM2021026.
    [14]
    冯海云, 胡宏伟, 肖川, 等. 两点阵列爆炸威力场分布及增益研究 [J]. 火炸药学报, 2020, 43(3): 345–350. DOI: 10.14077/j.issn.1007-7812.201911014.

    FENG H Y, HU H W, XIAO C, et al. Research on the blast power field distribution and gain of two-point array explosion [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 345–350. DOI: 10.14077/j.issn.1007-7812.201911014.
    [15]
    林尚剑, 王金相, 马腾, 等. 水下多点爆炸冲击波叠加效应研究 [J]. 兵工学报, 2020, 41(S1): 39–45. DOI: 10.3969/j.issn.1000-1093.2020.S1.006.

    LIN S J, WANG J X, MA T, et al. Superimposed effect of shock waves of underwater explosion [J]. Acta Armamentarii, 2020, 41(S1): 39–45. DOI: 10.3969/j.issn.1000-1093.2020.S1.006.
    [16]
    顾文彬, 孙百连, 阳天海, 等. 浅层水中沉底爆炸冲击波相互作用数值模拟 [J]. 解放军理工大学学报(自然科学版), 2003, 4(6): 64–68. DOI: 10.3969/j.issn.1009-3443.2003.06.015.

    GU W B, SUN B L, YANG T H, et al. Numerical simulation of explosive shockwave interaction in shallow-layer water [J]. Journal of PLA University of Science and Technology, 2003, 4(6): 64–68. DOI: 10.3969/j.issn.1009-3443.2003.06.015.
    [17]
    院素静, 杨凯, 刘泽瑞, 等. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟 [J]. 东南大学学报(自然科学版), 2023, 53(1): 76–85. DOI: 10.3969/j.issn.1001-0505.2023.01.010.

    YUAN S J, YANG K, LIU Z R, et al. Numerical simulation of damage mode and axial load effect of RC bridge columns under close-in explosion [J]. Journal of Southeast University (Natural Science Edition), 2023, 53(1): 76–85. DOI: 10.3969/j.issn.1001-0505.2023.01.010.
    [18]
    吴昊, 林城. 两层单跨缩尺RC框架结构外爆炸试验数值模拟 [J]. 建筑科学与工程学报, 2022, 39(3): 111–126. DOI: 10.19815/j.jace.2021.07016.

    WU H, LIN C. Numerical simulation on external explosion experiments of two-story single-span scaled RC frame structure [J]. Journal of Architecture and Civil Engineering, 2022, 39(3): 111–126. DOI: 10.19815/j.jace.2021.07016.
    [19]
    孙珊珊, 赵均海, 贺拴海, 等. 爆炸荷载下钢管混凝土墩柱的动力响应研究 [J]. 工程力学, 2018, 35(5): 27–35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246.

    SUN S S, ZHAO J H, HE S H, et al. Dynamic response of concrete-filled steel tube piers under blast loadings [J]. Engineering Mechanics, 2018, 35(5): 27–35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (139) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return