Volume 44 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Weirong, CHEN Shuyang, WANG Xuejun, ZHAO Xinwen, HUANG Shizhang, LI Xinzhu, WU Qiang. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion And Shock Waves, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089
Citation: WANG Weirong, CHEN Shuyang, WANG Xuejun, ZHAO Xinwen, HUANG Shizhang, LI Xinzhu, WU Qiang. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion And Shock Waves, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089

An improved Asay foil method for measuring areal density of ejecta under complex loading conditions

doi: 10.11883/bzycj-2023-0089
  • Received Date: 2023-03-12
  • Rev Recd Date: 2024-01-19
  • Available Online: 2023-12-18
  • Publish Date: 2024-03-14
  • The Asay foil has been a widely applied diagnostic in ejecta measurement since its design was first reported in 1976. An Asay foil is a foil of a known mass (or areal density), whose velocity changed when it is impacted by ejecta. The Foil velocity is measured using velocimetry and the ejecta velocity is inferred from the initial gap between foil and free surface and the ejecta fly time. The mass of the impacting ejecta can then be inferred from the change in momentum of the foil. In some cases, the ejecta spray out from complex loading conditions such as double shock loading condition, the initial gap and fly time are unable to measure accurately, thus the Asay foil method doesn’t work. Therefore, it is necessary to develop an Asay foil method that does not depend on the initial gap and fly time. An improved Asay foil method is then developed based on the traditional Asay foil method. This method uses photonic Doppler velocimetry (PDV) to obtain the ejecta velocity in the testing area of the Asay foil probe, and the Asay foil probe obtains the foil velocity curve after the ejecta collides with the foil. Based on spatial position constraints and precise temporal correlation, the combination of the two velocity curve results can provide the total amount and distribution of ejecta under complex loading conditions. A numerical experimental method was used to generate ejecta particle groups with different distribution states, as well as the PDV velocity curve and Asay foil velocity curve to analyze the applicability of the method. In addition, the numerical experimental analysis results were verified using light gas gun experiments. The numerical experimental analysis results show that this method has good applicability in three typical ejecta distribution cases, with a deviation of less than 20% between the measured value and the theoretical value. The results of the light gas gun tests indicate that the deviation between the improved method and the traditional Asay foil method is less than 20%.
  • loading
  • [1]
    WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. DOI: 10.1063/1.1721278.
    [2]
    ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces [J]. Journal of Applied Physics, 2007, 102(1): 013522. DOI: 10.1063/1.2752130.
    [3]
    ZELLNER M B, DIMONTE G, GERMANN T C, et al. Influence of shockwave profile on ejecta [J]. AIP Conference Proceedings, 2009, 1195(1): 1047–1050. DOI: 10.1063/1.3294980.
    [4]
    BUTTLER W T, ORÓ D M, OLSON R T, et al. Second shock ejecta measurements with an explosively driven two-shockwave drive [J]. Journal of Applied Physics, 2014, 116(10): 103519. DOI: 10.1063/1.4895053.
    [5]
    ASAY J R, BERTHOLF L D. Model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND-78-1256 [R]. Albuquerque: Sandia National Laboratory, 1978. DOI: 10.2172/6793637.
    [6]
    BUTTLER W T, SCHULZE R K, CHARONKO J J, et al. Understanding the transport and break up of reactive ejecta [J]. Physica D: Nonlinear Phenomena, 2021, 415: 132787. DOI: 10.1016/j.physd.2020.132787.
    [7]
    ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. DOI: 10.1063/1.89066.
    [8]
    ASAY J R. Thick-plate technique for measuring ejecta from shocked surfaces [J]. Journal of Applied Physics, 1978, 49(12): 6173–6175. DOI: 10.1063/1.324545.
    [9]
    马云, 汪小松, 李欣竹, 等. ASAY膜法测量微物质喷射总质量不确定度的初步实验研究 [J]. 高压物理学报, 2006, 20(2): 207–210. DOI: 10.11858/gywlxb.2006.02.016.

    MA Y, WANG X S, LI X Z, et al. Study of the uncertainty of the ejected mass measured by ASAY foil method [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 207–210. DOI: 10.11858/gywlxb.2006.02.016.
    [10]
    BELL D J, ROUTLEY N R, WHITEMAN G, et al. The development of a smaller Asay foil diagnostic [J]. AIP Conference Proceedings, 2018, 1979(1): 080001. DOI: 10.1063/1.5044843.
    [11]
    MCCLUSKEY C W, WILKE M D, ANDERSON W W, et al. Asay window: a new spall diagnostic [J]. Review of Scientific Instruments, 2006, 77(11): 113902. DOI: 10.1063/1.2336753.
    [12]
    CHEN Y T, HONG R K, CHEN H Y, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. DOI: 10.1063/1.4973699.
    [13]
    KARKHANIS V, RAMAPRABHU P, BUTTLER W T, et al. Ejecta production from second shock: numerical simulations and experiments [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 265–279. DOI: 10.1007/s40870-017-0091-9.
    [14]
    WILLIAMS R J R, GRAPES C C. Simulation of double-shock ejecta production [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 291–299. DOI: 10.1007/s40870-017-0107-5.
    [15]
    WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (139) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return