Citation: | ZHAO Jiaxing, LI Qi, ZHANG Liang, LIU Songhan, JIANG Lin. Experimental study on mitigation effects of water mist on blast wave[J]. Explosion And Shock Waves, 2023, 43(10): 105401. doi: 10.11883/bzycj-2023-0108 |
[1] |
SCHUNCK T, BASTIDE M, ECKENFELS D, et al. Blast mitigation by water mist: the effect of the detonation configuration [J]. Shock Waves, 2020, 30(6): 629–644. DOI: 10.1007/s00193-020-00960-1.
|
[2] |
KONG X S, ZHOU H, ZHENG C, et al. An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates [J]. International Journal of Impact Engineering, 2019, 134. DOI: 10.1016/j.ijimpeng.2019.103370.
|
[3] |
TAMBA T, SUGIYAMA Y, OHTANI K, et al. Comparison of blast mitigation performance between water layers and water droplets [J]. Shock Waves, 2021, 31(1): 89–94. DOI: 10.1007/s00193-021-00990-3.
|
[4] |
XU H B, CHEN L K, ZHANG D Z, et al. Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space [J]. Defence Technology, 2021, 17(03): 1071–80. DOI: 10.1016/j.dt.2020.06.026.
|
[5] |
孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(16): 062901. DOI: 10.11883/bzycj-2020-0193.
KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021,41(16): 062901. DOI: 10.11883/bzycj-2020-0193.
|
[6] |
JIBA Z, SONO T J, MOSTERT F J. Implications of fine water mist environment on the post-detonation processes of a PE4 explosive charge in a semi-confined blast chamber [J]. Defence Technology, 2018, 14(5): 366–372. DOI: 10.1016/j.dt.2018.05.005.
|
[7] |
PONTALIER Q, LOISEAU J, GOROSHIN S, et al. Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids [J]. Shock Waves, 2018, 28(3): 489−511. DOI: 10.1007/s00193-018-0821-5.
|
[8] |
徐海斌, 张德志, 秦学军, 等. 炸药周围水层对空气冲击波反射超压影响的实验研究 [J]. 兵工学报, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
XU H B, ZHANG D Z, QIN X J, et al. An investigation on mitigation effect of water surrounding an explosive on reflected overpressure of shock wave. [J]. Acta Armamentarii, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
|
[9] |
LI C, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003.
|
[10] |
JEON H, ELIASSON V. Shock wave interactions with liquid sheets [J]. Experiments in Fluids, 2017, 58(4): 24. DOI: 10.1007/s00348-017-2300-7.
|
[11] |
BAILEY J L, FARLEY J P, WILLIAMS F W, et al. Blast mitigation using water mist: NRL/MR/6410-06-8976 [R]. USA: Naval Research Laboratory, 2006.
|
[12] |
WILLAUER H D, ANANTH R. , FARLEY J P, et al. Blast mitigation using water mist test series II: NRL/MR/6180-09-9182 [R]. USA: Naval Research Laboratory, 2009.
|
[13] |
叶经方, 董刚, 解立峰. 管道内水雾对冲击波衰减作用的实验研究 [J]. 爆破器材, 2006, 35(5): 1-4.
YE J F, DONG G, XIE L F, Experimental investigation of shock wave decay by water mist in duct [J]. Explosive Materials, 2006, 35(5): 1-4.
|
[14] |
陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(9): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigating effect of water mist on the explosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(9): 927–33. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
|
[15] |
张晓忠, 孔福利, 王启睿, 等. 内爆炸情况下通道中水雾对冲击波的衰减效应研究 [J]. 防护工程, 2011(1): 6–10.
ZHANG X Z, KONG F L, WANG Q R, et al. Study on shock wave attenuation effects of water fog in channel under internal detonation [J]. Protective Engineering, 2011(1): 6–10.
|
[16] |
ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast [J]. Fire Technology, 2012, 48(3): 641–675. DOI: 10.1007/s10694-010-0156-y.
|
[17] |
SUGIYAMA Y, SHIBUE K, MATSUO A. The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry [J]. International Journal of Multiphase Flow, 2023, 159: 104322. DOI: 10.1016/j.ijmultiphaseflow.2022.104322.
|
[18] |
JOURDAN G, BIAMINO L, MARIANI C, et al. Attenuation of a shock wave passing through a cloud of water droplets [J]. Shock Waves, 2010, 20(4): 285–296. DOI: 10.1007/s00193-010-0251-5.
|
[19] |
CHAUVIN A, JOURDAN G, DANIEL E, et al. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium [J]. Physics of Fluids, 2011, 23(11): 113301. DOI: 10.1063/1.3657083.
|
[20] |
SHARMA S, PRATAP S A, SRINIVAS R S. , et al. Shock induced aerobreakup of a droplet [J]. Journal of Fluid Mechanics, 2021, 929. DOI: 10.1017/jfm.2021.860.
|
[21] |
LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. DOI: 10.1063/1.4768815.
|
[22] |
SUGIYAMA Y, ANDO H, SHIMURA K, et al. Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD-DEM model [J]. Shock Waves, 2019, 29(4): 499–510. DOI: 10.1007/s00193-018-0878-1.
|
[23] |
王超, 吴宇, 施红辉, 等. 液滴在激波冲击下的破裂过程 [J]. 爆炸与冲击, 2016, 36(1): 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.
WANG C, WU Y, SHI H H, et al. Breakup process of a droplet under the impact of a shock wave [J]. Explosion and Shock Waves, 2016, 36(01): 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.
|
[24] |
GUILDENBECHER D R, LóPEZ-RIVERA C, SOJKA P E. Secondary atomization [J]. Experiments in Fluids, 2009, 46(3): 371−402. DOI: 10.1007/s00348-008-0593-2.
|
[25] |
POPLAVSKI S V, MINAKOV A V, SHEBELEVA A A, et al. On the interaction of water droplet with a shock wave: Experiment and numerical simulation [J]. International Journal of Multiphase Flow, 2020, 127: 103273. DOI: 10.1016/j.ijmultiphaseflow.2020.103273.
|
[26] |
ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323. DOI: 10.1063/5.0145415.
|
[27] |
CHAUVIN A, DANIEL E, CHINNAYYA A, et al. Shock waves in sprays: numerical study of secondary atomization and experimental comparison [J]. Shock Waves, 2016, 26(4): 403-415. DOI: 10.1007/s00193-015-0593-0.
|
[28] |
SHIBUE K, SUGIYAMA Y, MATSUO A. Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry [J]. Process Safety and Environmental Protection, 2022, 160: 491–501. DOI: 10.1016/j.psep.2022.02.038.
|
[29] |
SUGIYAMA Y, TAMBA T, OHTANI K. Numerical study on a blast mitigation mechanism by a water droplet layer: Validation with experimental results, and the effect of the layer radius [J]. Physics of Fluids, 2022, 34(7): 076104. DOI: 10.1063/5.0091959.
|
[1] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[2] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[3] | WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173 |
[4] | HU Zhile, MA Liangliang, WU Hao, FANG Qin. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion[J]. Explosion And Shock Waves, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499 |
[5] | LIU Xiaobo, LI Shuai, ZHANG Aman. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion[J]. Explosion And Shock Waves, 2022, 42(1): 014202. doi: 10.11883/bzycj-2021-0106 |
[6] | KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193 |
[7] | JIANG Nan, Bi Yixing, LÜ Dong, WANG Lu, MU Yangyang. Explosion overpressure of hydrogen cloud in catalytic reforming process[J]. Explosion And Shock Waves, 2019, 39(2): 025403. doi: 10.11883/bzycj-2017-0371 |
[8] | FAN Baolong, BAI Chunhua, WANG Bo, GAO Kanghua, LI Bin. Explosion overpressure field of natural gas in a large-scaled confined vessel[J]. Explosion And Shock Waves, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191 |
[9] | LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209 |
[10] | Liu Guibing, Hou Hailiang, Zhu Xi, Zhang Guodong. Attenuation of shock wave passing through liquid droplets[J]. Explosion And Shock Waves, 2017, 37(5): 844-852. doi: 10.11883/1001-1455(2017)05-0844-09 |
[11] | Zhao Xinying, Wang Boliang, Li Xi. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion And Shock Waves, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05 |
[12] | Zhou Pei-jie, Wang Jian, Tao Gang, Zhou Jie. Attenuation characteristics of shock waves interacting with open and closed foams[J]. Explosion And Shock Waves, 2015, 35(5): 675-681. doi: 10.11883/1001-1455(2015)05-0675-07 |
[13] | Du Hong-mian, He Zhi-wen, Ma Tie-hua. Frequency domain characteristic of secondary instrument in the shock overpressure measurement system[J]. Explosion And Shock Waves, 2015, 35(2): 261-266. doi: 10.11883/1001-1455(2015)02-0261-06 |
[14] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[15] | Guo Ya-li, Han Yan, Wang Li-ming. Overpressure reconstruction of shock wave based on generalized inverse theory[J]. Explosion And Shock Waves, 2014, 34(6): 764-768. doi: 10.11883/1001-1455(2014)06-0764-05 |
[16] | Lin Mou-jin, Ma Hong-hao, Shen Zhao-wu, Jiao Long. Effect of aluminum fiber on underwater detonation performance of RDX[J]. Explosion And Shock Waves, 2014, 34(3): 379-384. doi: 10.11883/1001-1455(2014)03-0379-06 |
[17] | Fan Jin, Xu Da-li, Ren Xin-jian. Propagation of shock waves in protective structures with holes under contact explosive loads[J]. Explosion And Shock Waves, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09 |
[18] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[19] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
[20] | CHEN Wen, ZHANG Qing-ming. A preliminary investigation on dynamic analysis models for missile structures subjected to blast wave[J]. Explosion And Shock Waves, 2009, 29(2): 199-204. doi: 10.11883/1001-1455(2009)02-0199-06 |