Volume 44 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HUANG Zhengui, FAN Haowei, CHEN Zhihua, ZHOU Ke, LIU Xiangyan, WANG Hao. Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles[J]. Explosion And Shock Waves, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156
Citation: HUANG Zhengui, FAN Haowei, CHEN Zhihua, ZHOU Ke, LIU Xiangyan, WANG Hao. Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles[J]. Explosion And Shock Waves, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156

Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles

doi: 10.11883/bzycj-2023-0156
  • Received Date: 2023-04-27
  • Rev Recd Date: 2023-06-05
  • Available Online: 2023-11-02
  • Publish Date: 2024-01-11
  • To analyze the mechanism and characteristics of high-speed water entry of hollow projectiles, a numerical simulation study of the high-speed water entry of the hollow projectiles was carried out based on the Reynolds average Navier-Stokes equation (RANS), the volume of fluid (VOF) multi-phase flow model, the realizable k-ε flux model, the Schnerr and Sauer aeration model, the six-degrees-freedom (6-DOF) motion simulation method, and the overlapping grid technology. The effects of through-hole aperture and head shape on the cavitation characteristics, cavity morphology, and water entry kinematic properties of the hollow projectile were obtained. The effectiveness of the calculation method was verified by comparing it with the water entry experiment. The results show that the numerically calculated cavity morphology and water entry velocity and displacement curves are in good agreement with the experimental results, which verify the effectiveness of the numerical simulation method. When the through-hole aperture is different, the larger the through-hole aperture, the more pronounced the cavitation phenomenon and the longer the through-hole jet, but the effect on the radius of the cavity is not significant. The smaller the through-hole aperture, the earlier the closure time, the higher the peak drag coefficient resulting from impact with the water surface, and the greater the drag coefficient after the hollow projectile has stabilized in the water. The movement of the hollow projectile is most stable when the dimensionless diameter is between 0.575 and 0.600. When the head cone angle is varied, the larger the head cone angle, the larger the diameter of the cavity, and the later the cavitation phenomenon begins, but the faster the cavitation is generated. As the head cone angle increases, the drag coefficient becomes larger and the velocity of the hollow projectile decays faster, moving a shorter distance at the same time. However, the larger the head cone angle, the smaller the change in pitch angle and the more stable the motion of the hollow projectile.
  • loading
  • [1]
    ZHAO Q, CHEN Z H, HUANG Z G, et al. Optimization of the aerodynamic configuration of a tubular projectile based on blind kriging [J]. Scientia Iranica, 2019, 26(1): 311–322. DOI: 10.24200/SCI.2017.20015.
    [2]
    黄振贵, 李艳玲, 陈志华, 等. 空心弹的阻力特性与气动外形数值分析 [J]. 兵工学报, 2013, 34(5): 535–540. DOI: 10.3969/j.issn.1000-1093.2013.05.004.

    HUANG Z G, LI Y L, CHEN Z H, et al. Numerical investigations on the drag and aerodynamic characteristics of a hollow projectile [J]. Acta Armamentarii, 2013, 34(5): 535–540. DOI: 10.3969/j.issn.1000-1093.2013.05.004.
    [3]
    WORTHINGTON A M, COLE R S IV. Impact with a liquid surface studied by the aid of instantaneous photography: Paper II [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194(252): 175–199. DOI: 10.1098/rsta.1900.0016.
    [4]
    WORTHINGTON A M. A study of splashes [M]. New York: Longmans, Green, and Company, 1908: 25−76.
    [5]
    DE BACKER G, VANTORRE M, BEELS C, et al. Experimental investigation of water impact on axisymmetric bodies [J]. Applied Ocean Research, 2009, 31(3): 143–156. DOI: 10.1016/j.apor.2009.07.003.
    [6]
    TRUSCOTT T T, TECHET A H, BEAL D N. Shallow angle water entry of ballistic projectiles [C]//Proceedings of the 7th International Symposium on Cavitation. Michigan, USA: Ann Arbor, 2009: 1–14.
    [7]
    陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.

    CHEN X F. A method of observing both the motion of the free surface and the front of the mass-ejection of shocked lead [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
    [8]
    施红辉, 周浩磊, 吴岩, 等. 伴随超空泡产生的高速细长体入水实验研究 [J]. 力学学报, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.

    SHI H H, ZHOU H L, WU Y, et al. Experiments on water entry of high-speed slender body and the resulting supercavitation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.
    [9]
    宋武超, 王聪, 魏英杰, 等. 回转体倾斜入水空泡及弹道特性实验 [J]. 北京航空航天大学学报, 2016, 42(11): 2386–2394. DOI: 10.13700/j.bh.1001-5965.2015.0690.

    SONG W C, WANG C, WEI Y J, et al. Experiment of cavity and trajectory characteristics of oblique water entry of revolution bodies [J]. Journal of Beijing University of Aeronautics and Astronasutics, 2016, 42(11): 2386–2394. DOI: 10.13700/j.bh.1001-5965.2015.0690.
    [10]
    赵成功, 王聪, 魏英杰, 等. 细长体水下运动空化流场及弹道特性实验 [J]. 爆炸与冲击, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.

    ZHAO C G, WANG C, WEI Y J, et al. Experiment of cavitation and ballistic characteristics of slender body underwater movement [J]. Explosion and Shock Waves, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
    [11]
    罗驭川, 黄振贵, 高建国, 等. 截锥体头型弹丸低速斜入水实验研究 [J]. 爆炸与冲击, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.

    LUO Y C, HUANG Z G, GAO J G, et al. Experiment research of low-speed oblique water-entry of truncated cone-shaped projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
    [12]
    朱珠, 罗松, 卢丙举, 等. 旋转射弹高速倾斜入水多相流场与弹道数值模拟 [J]. 爆炸与冲击, 2019, 39(11): 113901. DOI: 10.11883/bzycj-2018-0315.

    ZHU Z, LUO S, LU B J, et al. Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113901. DOI: 10.11883/bzycj-2018-0315.
    [13]
    邵志宇, 伍思宇, 曹苗苗, 等. 斜截头弹体入水的弹道特性 [J]. 兵工学报, 2022, 43(6): 1255–1265. DOI: 10.12382/bgxb.2021.0301.

    SHAO Z Y, WU S Y, CAO M M, et al. Water-entry trajectory of truncated cone-shaped projectile [J]. Acta Armamentarii, 2022, 43(6): 1255–1265. DOI: 10.12382/bgxb.2021.0301.
    [14]
    高旭东, 钱建平, 王晓鸣, 等. 空心弹丸流场数值模拟与阻力特性 [J]. 南京理工大学学报(自然科学版), 2005, 29(2): 158–161.

    GAO X D, QIAN J P, WANG X M, et al. Flowfield calculation and drag characteristic of hollow projectile [J]. Journal of Nanjing University of Science and Technology, 2005, 29(2): 158–161.
    [15]
    任登凤, 谭俊杰, 张军. 非结构隐式方法在空心弹丸流场模拟中的应用 [J]. 力学与实践, 2006, 28(5): 24–27. DOI: 10.3969/j.issn.1000-0879.2006.05.005.

    REN D F, TAN J J, ZHANG J. Flowfield calculation of hollow projectile using implicit method based on unstructured meshes [J]. Mechanics in Engineering, 2006, 28(5): 24–27. DOI: 10.3969/j.issn.1000-0879.2006.05.005.
    [16]
    杜宏宝, 蒋锋, 黄振贵, 等. 内锥型空心弹阻塞临界入口锥角仿真研究 [J]. 南京理工大学学报(自然科学版), 2018, 42(6): 642–646, 670. DOI: 10.14177/j.cnki.32-1397n.2018.42.06.002.

    DU H B, JIANG F HUANG Z G, et al. Simulation of critical inlet angle of inner conical hollow projectile under choke flow [J]. Journal of Nanjing University of Science and Technology, 2018, 42(6): 642–646, 670. DOI: 10.14177/j.cnki.32-1397n.2018.42.06.002.
    [17]
    全鑫, 张红艳, 马铁华, 等. 内锥型空心弹阻塞喉径面积比的仿真研究 [J]. 兵器装备工程学报, 2021, 42(4): 97–101. DOI: 10.11809/bqzbgcxb2021.04.018.

    QUAN X, ZHANG H Y, MA T H, et al. Simulation research on critical area ratio of throat to entrance of inner conical hollow projectile under choke flow [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 97–101. DOI: 10.11809/bqzbgcxb2021.04.018.
    [18]
    WESSAM M E, HUANG Z G, CHEN Z H. Aerodynamic characteristics and flow field investigations of an optimal hollow projectile [C]// Proceedings of the 5th International Conference on Mechanical Engineering and Mechanics. Yangzhou: ICMEM, 2014: 181–186. DOI: 10.13140/2.1.2037.9529.
    [19]
    SAVCHENKO Y N. Hydrodynamic characteristics of a disc with central duct in a supercavitation flow [M]//NESTERUK I. Supercavitation. Berlin: Springer, 2012: 107–113. DOI: 10.1007/978-3-642-23656-3_6.
    [20]
    HOU Y, HUANG Z G, CHEN Z H, et al. Different closure patterns of the hollow cylinder cavities with various water-entry velocities [J]. Ocean Engineering, 2021, 221: 108526. DOI: 10.1016/j.oceaneng.2020.108526.
    [21]
    HOU Y, HUANG Z G, CHEN Z H, et al. Experimental investigations on the oblique water entry of hollow cylinders [J]. Ocean Engineering, 2022, 266: 112800. DOI: 10.1016/j.oceaneng.2022.112800.
    [22]
    LIU H, ZHOU B, YU J W, et al. Experimental investigation on the multiphase flow characteristics of oblique water entry of the hollow cylinders [J]. Ocean Engineering, 2023, 272: 113902. DOI: 10.1016/j.oceaneng.2023.113902.
    [23]
    SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics [C]// 4th International Conference on Multiphase Flow. New Orleans, LO, USA: ICMF, 2001.
    [24]
    CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (125) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return