Volume 44 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
JIANG Zhoushun, XU Fengxiang, ZOU Zhen, ZHOU Qianmou. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading[J]. Explosion And Shock Waves, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214
Citation: JIANG Zhoushun, XU Fengxiang, ZOU Zhen, ZHOU Qianmou. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading[J]. Explosion And Shock Waves, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214

Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading

doi: 10.11883/bzycj-2023-0214
  • Received Date: 2023-06-16
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-12-03
  • Publish Date: 2024-02-06
  • The remarkable energy absorption properties of the negative Poissonʼs ratio structure offer extensive prospects for applications in blast protection. However, the existing in-plane configurations of two-dimensional auxetic honeycomb cores always represent anisotropic behavior. To further enhance the blast resistance of sandwich panels, a three-dimensional sinusoidal curved-edge sandwich panel with a negative Poissonʼs ratio effect in both the X and Y directions for blast protection was proposed. The dynamic response and energy absorption characteristics under air blast load were studied by numerical simulation. Deformation modes and axial deflection distribution caused by plastic stretching and bending of the back face sheet were investigated in detail. The effects of stand-off distance (SOD), explosive mass, panel thickness, and key geometric parameters of the core layer on deformation and energy absorption were discussed. The results show that the dynamic response process of the sandwich panel can be divided into three stages: core compression, overall deformation, and free vibration. Moreover, it is found that there is no significant difference in the ability to resist deformation of the sandwich structure along the longitudinal (X) and transverse (Y) directions. As the TNT mass increases and the SOD decreases, the central displacement of the back face sheet of the sandwich panel increases, leading to a decrease in the energy absorption ratio of the core layer. Furthermore, utilizing a sandwich panel with a thin front panel and a thick back panel can increase the energy absorption proportion of the core layer. When increasing the thickness of the front and back panels by the same amount, the thickness of the front panel has a more significant effect on reducing the center displacement of the back panel. When the core thickness decreases from 0.6 mm to 0.2 mm, the back panel center displacement decreases by 49.0%, and the total energy absorption increases by 86.7%. As the core amplitude increases from 0.2mm to 1.0mm, the back panel center displacement decreases by 20.7%, with the total energy absorption remaining roughly constant. With an increase in core height from 10mm to 18mm, the back panel center displacement decreases by 88.3%, and the total energy absorption increases by 56.9%. Furthermore, a decrease in core aspect ratio from 0.56 to 0.2 results in a 39% reduction in back panel center displacement and a 47.4% increase in total energy absorption. The results of this study can guide the design of energy-absorbing protection for sandwich panels.
  • loading
  • [1]
    DHARMASENA K P, WADLEY H N G, XUE Z Y, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1063–1074. DOI: 10.1016/j.ijimpeng.2007.06.008.
    [2]
    ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122: 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
    [3]
    UTH T, DESHPANDE V S. Response of clamped sandwich beams subjected to high-velocity impact by sand slugs [J]. International Journal of Impact Engineering, 2014, 69: 165–181. DOI: 10.1016/j.ijimpeng.2014.02.012.
    [4]
    张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析 [J]. 北京理工大学学报, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.

    ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.
    [5]
    田力, 胡建伟. Ⅰ-Ⅴ型夹芯板在近爆冲击波和破片群联合作用下防爆性能研究 [J]. 湖南大学学报(自然科学版), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.

    TIAN L, HU J W. Research on explosion protective properties of I-V sandwich panel under combined loading of close-range blast wave and fragments [J]. Journal of Hunan University (Natural Sciences), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.
    [6]
    田力, 张浩. 冲击波和预制破片复合作用下H型钢柱损伤效应分析 [J]. 同济大学学报(自然科学版), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.

    TIAN L, ZHANG H. Damage effect analysis of H-section steel columns subjected to synergistic effects of blast and prefabricated fragments [J]. Journal of Tongji University (Natural Science), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.
    [7]
    ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading [J]. Engineering Structures, 2017, 151: 459–471. DOI: 10.1016/j.engstruct.2017.08.039.
    [8]
    LI J F, QIN Q H, ZHANG J X. Internal blast resistance of sandwich cylinder with lattice cores [J]. International Journal of Mechanical Sciences, 2021, 191: 106107. DOI: 10.1016/j.ijmecsci.2020.106107.
    [9]
    李勇, 肖伟, 程远胜, 等. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究 [J]. 爆炸与冲击, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.

    LI Y, XIAO W, CHENG Y S, et al. Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings [J]. Explosion and Shock Waves, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.
    [10]
    QIN Q H, CHEN S J, LI K K, et al. Structural impact damage of metal honeycomb sandwich plates [J]. Composite Structures, 2020, 252: 112719. DOI: 10.1016/j.compstruct.2020.112719.
    [11]
    ZHANG J X, QIN Q H, ZHANG J T, et al. Low-velocity impact on square sandwich plates with fibre-metal laminate face-sheets: analytical and numerical research [J]. Composite Structures, 2021, 259: 113461. DOI: 10.1016/j.compstruct.2020.113461.
    [12]
    QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
    [13]
    ZHANG J X, ZHU Y Q, LI K K, et al. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2022, 164: 104201. DOI: 10.1016/j.ijimpeng.2022.104201.
    [14]
    ZHANG X W, YANG D Q. Mechanical properties of auxetic cellular material consisting of Re-entrant hexagonal honeycombs [J]. Materials, 2016, 9(11): 900. DOI: 10.3390/ma9110900.
    [15]
    BEZAZI A, SCARPA F. Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading [J]. International Journal of Fatigue, 2007, 29(5): 922–930. DOI: 10.1016/j.ijfatigue.2006.07.015.
    [16]
    ABADA M, IBRAHIM A. Metallic ribbon-core sandwich panels subjected to air blast loading [J]. Applied Sciences, 2020, 10(13): 4500. DOI: 10.3390/app10134500.
    [17]
    WIERNICKI C J, LIEM P E F, WOODS G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads [J]. Naval Engineers Journal, 1991, 103(3): 192–202. DOI: 10.1111/j.1559-3584.1991.tb00949.x.
    [18]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997. DOI: 10.1017/CBO9781139878326.
    [19]
    LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing, 2003.
    [20]
    JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B:Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
    [21]
    ZHANG P W, LI X, JIN T, et al. Dynamic response of circular metallic sandwich panels under projectile impact [J]. Journal of Sandwich Structures and Materials, 2017, 19(5): 572–594. DOI: 10.1177/1099636215626596.
    [22]
    孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.

    SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [J]. Explosion and Shock Waves, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.
    [23]
    杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素 [J]. 上海交通大学学报, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.

    YANG D Q, ZHANG X W, WU B H. The influence factors of explosion and shock resistance performance of Auxetic sandwich defensive structures [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.
    [24]
    孙魁远, 孙晓旺, 张宏伟, 等. 厚度梯度型负泊松比蜂窝抗爆炸特性及优化 [J]. 兵器装备工程学报, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.

    SUN K Y, SUN X W, ZHANG H W, et al. Anti-explosion characteristics and optimization of negative Poisson’s ratio honeycomb with thickness gradient [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.
    [25]
    卫禹辰, 袁梦琦, 钱新明, 等. 爆炸冲击环境下内凹蜂窝型梯度结构响应特性研究 [J]. 中国安全生产科学技术, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.

    WEI Y C, YUAN M Q, QIAN X M, et al. Research on response characteristics of concave honeycomb gradient structure under explosive impact environment [J]. Journal of Safety Science and Technology, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.
    [26]
    杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
    [27]
    JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B:Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [28]
    GAO Q, GE C Q, ZHUANG W C, et al. Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading [J]. Materials and Design, 2019, 161: 22–34. DOI: 10.1016/j.matdes.2018.11.013.
    [29]
    BEHARIC A, EGUI R R, YANG L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs [J]. Materials and Design, 2018, 145: 122–134. DOI: 10.1016/j.matdes.2018.02.066.
    [30]
    杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究 [J]. 工程力学, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.

    YANG Z S, XUE Y X, LIU A R. Study on the impact dynamics of three-dimensional star-shaped structure with negative Poisson’s ratio [J]. Engineering Mechanics, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.
    [31]
    WANG Y L, ZHAO W Z, ZHOU G, et al. Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading [J]. International Journal of Mechanical Sciences, 2018, 142/143: 245–254. DOI: 10.1016/j.ijmecsci.2018.05.001.
    [32]
    IMBALZANO G, TRAN P, NGO T D, et al. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance [J]. Journal of Sandwich Structures and Materials, 2017, 19(3): 291–316. DOI: 10.1177/1099636215618539.
    [33]
    IMBALZANO G, TRAN P, LEE P V S, et al. Influences of material and geometry in the performance of auxetic composite structure under blast loading [J]. Applied Mechanics and Materials, 2016, 846: 476–481. DOI: 10.4028/www.scientific.net/AMM.846.476.
    [34]
    XU F X, YU K J, HUA L. In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve [J]. Composite Structures, 2021, 269: 114018. DOI: 10.1016/j.compstruct.2021.114018.
    [35]
    虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究 [J]. 振动与冲击, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.

    YU K J, XU F X, HUA L. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.
    [36]
    邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.

    DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.
    [37]
    LI X, ZHANG P W, WANG Z H, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. DOI: 10.1016/j.compstruct.2013.10.034.
    [38]
    NEUBERGER A, PELES S, RITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: buried charges [J]. International Journal of Impact Engineering, 2007, 34(5): 874–882. DOI: 10.1016/j.ijimpeng.2006.04.002.
    [39]
    LIU J F, WANG Z G, HUI D. Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes [J]. Composites Part B: Engineering, 2018, 145: 261–269. DOI: 10.1016/j.compositesb.2018.03.005.
    [40]
    WANG E D, LI Q, SUN G Y. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance [J]. Thin-Walled Structures, 2020, 147: 106494. DOI: 10.1016/j.tws.2019.106494.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(4)

    Article Metrics

    Article views (151) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return