Volume 44 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
MENG Xianzhong, ZHOU Chuanbo, JIANG Nan, ZHANG Yuqi, ZHANG Zhen, WU Di. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface[J]. Explosion And Shock Waves, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217
Citation: MENG Xianzhong, ZHOU Chuanbo, JIANG Nan, ZHANG Yuqi, ZHANG Zhen, WU Di. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface[J]. Explosion And Shock Waves, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217

Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface

doi: 10.11883/bzycj-2023-0217
  • Received Date: 2023-06-19
  • Rev Recd Date: 2023-12-18
  • Available Online: 2023-12-19
  • Publish Date: 2024-02-06
  • In tunnel blasting and excavation engineering, blasting vibration is the main harmful effect affecting safety and stability. In order to investigate the generation mechanism and propagation patterns of seismic waves resulting from blasting in tunnel contexts, a theoretical model based on plane strain conditions is developed to depict the tunnel surface vibration caused by blasting. Then, a solution in integral form is derived to describe the surface vibration field generated from tunnel blasting. Utilizing the Longnan tunnel blasting project as a contextual backdrop, a finite element numerical model is established to recreate the conditions. This allows for the validation of both the numerical simulations and theoretical solutions through on-site tests. To elucidate the propagation characteristics of distinct types of seismic waves resulting from blasting, a method adopting a high-resolution Radon transform approach is devised to separate the tunnel blasting seismic wave field. By combining theoretical analysis with numerical simulation, the propagation characteristics of P-waves, S-waves, and R-waves are ascertained. Further, by synthesizing theoretical results and wave field separation results, the seismic wave action partition of tunnel blasting is proposed. The results show that tunnel blasting excites P-waves and S-waves, while R-waves surge swiftly upon encountering the free surface. The triad of wave categories displays exponential attenuation tendencies, with S-waves demonstrating a swifter decay rate than P-waves, and P-waves outpacing R-waves in this regard. In terms of directional dominance, the main component in the vertical direction changes from S-wave to R-wave, and the main component in the horizontal direction changes from S-wave to P-wave, and then P-wave changes to R-wave. A detailed spatial analysis further elucidates this scenario. Under the working conditions of grade Ⅳ surrounding rock, the seismic wave action zone of tunnel blasting is as follows: the area of 0–6.44 m away from the tunnel axis to the tunnel face is regarded as the near area of blasting, where the dominant wave type is horizontal S-wave; the area of 6.44–21.23 m is regarded as the middle area of blasting, where the dominant wave type is horizontal P-wave; and the area beyond 21.23 m is regarded as blasting far zone, where the dominant wave type is vertical R-wave. In addition, a linear relationship exists between the boundary point of the blasting zone and the maximum amount of charge in a single section, and the position of the blasting zone in the tunnel can be obtained through the amount of blasting charge, which can be used for the analysis of the safety and stability of the tunnel.
  • loading
  • [1]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Safety regulations for blasting: GB 6722-2014 [S]. Beijing: Standards Press of China, 2015.
    [2]
    唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.

    TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.
    [3]
    蒋楠. 露天转地下开采边坡爆破动力特性研究 [D]. 武汉: 中国地质大学, 2013: 30–32.

    JIANG N. Study on blasting dynamic characteristics of open pit to underground mining slope [D]. Wuhan: China University of Geosciences, 2013: 30–32.
    [4]
    夏祥, 李俊如, 李海波, 等. 爆破荷载作用下岩体振动特征的数值模拟 [J]. 岩土力学, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011.

    XIA X, LI J R, LI H B, et al. Udec modeling of vibration characteristics of jointed rock mass under explosion [J]. Rock and Soil Mechanics, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011.
    [5]
    夏文俊, 卢文波, 陈明, 等. 白鹤滩坝址柱状节理玄武岩爆破损伤质点峰值振速安全阈值研究 [J]. 岩石力学与工程学报, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036.

    XIA W J, LU W B, CHEN M, et al. Study on safety threshold of peak particle velocity about blasting damage of columnar jointed basalt rock mass in Baihetan Dam site [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036.
    [6]
    WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI: 10.1016/j.compgeo.2023.105271.
    [7]
    SHARPE J A. The production of elastic waves by explosion pressures: I. theory and empirical field observations [J]. Geophysics, 1942, 7(2): 144–154. DOI: 10.1190/1.1445002.
    [8]
    BLAKE JR F G. Spherical wave propagation in solid media [J]. The Journal of the Acoustical Society of America, 1952, 24(2): 211–215. DOI: 10.1121/1.1906882.
    [9]
    RICKER N. The form and laws of propagation of seismic wavelets [J]. Geophysics, 1953, 18(1): 10–40. DOI: 10.1190/1.1437843.
    [10]
    HEELAN P A. Radiation from a cylindrical source of finite length [J]. Geophysics, 1953, 18(3): 685–696. DOI: 10.1190/1.1437923.
    [11]
    JORDAN D W. The stress wave from a finite, cylindrical explosive source [J]. Journal of Mathematics and Mechanics, 1962, 11(4): 503–551.
    [12]
    ABO-ZENA A. Radiation from a finite cylindrical explosive source [J]. Geophysics, 1977, 42(7): 1384–1393. DOI: 10.1190/1.1440799.
    [13]
    LAMB H. I. On the propagation of tremors over the surface of an elastic solid [J]. Philosophical Transactions of the Royal Society A, 1904, 203(359): 1–42.
    [14]
    EASON G. The displacements produced in an elastic half-space by a suddenly applied surface force [J]. IMA Journal of Applied Mathematics, 1966, 2(4): 299–326. DOI: 10.1093/imamat/2.4.299.
    [15]
    王小岗. 横观各向同性饱和地基三维瞬态Lamb问题 [J]. 岩土力学, 2011, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040.

    WANG X G. Three-dimensional transient Lamb’s problem of transversely isotropic saturated soils [J]. Rock and Soil Mechanics, 2009, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040.
    [16]
    徐则民, 黄润秋. 岩爆与爆破的关系 [J]. 岩石力学与工程学报, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014.

    XU Z M, HUANG R Q. Relationship between rock burst and blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014.
    [17]
    王立安, 赵建昌, 侯小强, 等. 非均匀饱和半空间的Lamb问题 [J]. 岩土力学, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591.

    WANG L A, ZHAO J C, HOU X Q, et al. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591.
    [18]
    周红敏, 赵事成, 赵文清, 等. 基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 [J]. 振动与冲击, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010.

    ZHOU H M, ZHAO S C, ZHAO W Q, et al. Vibration signal denoising optimization analysis in tunnel excavation based on improved MEEMD [J]. Journal of Vibration and Shock, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010.
    [19]
    付晓强, 麻岩, 俞缙, 等. 隧道爆破振动信号时频谱增强优化分析 [J]. 矿业科学学报, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008.

    FU X Q, MA Y, YU J, et al. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal [J]. Journal of Mining Science and Technology, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008.
    [20]
    高启栋, 卢文波, 杨招伟, 等. 水平光面爆破激发地震波的成分及衰减特征 [J]. 爆炸与冲击, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280.

    GAO Q D, LU W B, YANG Z W, et al. Components and attenuation of seismic wavesinduced by horizontal smooth blasting [J]. Explosion and Shock Waves, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280.
    [21]
    高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.

    GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.
    [22]
    陈士海, 魏海霞, 杜荣强. 爆破震动信号的多分辨小波分析 [J]. 岩土力学, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027.

    CHEN S H, WEI H X, DU R Q. Multi-resolution wavelet analysis of blasting vibration signals [J]. Rock and Soil Mechanics, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027.
    [23]
    杨年华. 爆破振动理论与测控技术 [M]. 北京: 中国铁道出版社, 2014: 112–116.
    [24]
    BIOT M A. Propagation of elastic waves in a cylindrical bore containing a fluid [J]. Journal of Applied Physics, 1952, 23(9): 997–1005. DOI: 10.1063/1.1702365.
    [25]
    MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
    [26]
    尤金 D. Mathematica使用指南 [M]. 邓建松, 彭冉冉, 译. 北京: 科学出版社, 2002: 204–209.
    [27]
    周海孝, 高启栋, 王亚琼, 等. 隧洞全断面开挖中不同爆破孔作用边界及其诱发振动特性的比较分析 [J]. 岩石力学与工程学报, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078.

    ZHOU H X, GAO Q D, WANG Y Q, et al. Comparative analysis of vibration characteristics induced by different kinds of boreholes and their blasting boundaries during full-face tunnel blasting excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078.
    [28]
    杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [29]
    黄德智. 基于反射波信号相似性的地震波场分离方法研究 [D]. 长春: 吉林大学, 2021: 11–13.

    HUANG D Z. Study on the wave field separation of seismic based on the similarity of reflected wave signal [D]. Changchun: Jilin University, 2021: 11–13.
    [30]
    TRAD D, ULRYCH T, SACCHI M. Latest views of the sparse Radon transform [J]. Geophysics, 2003, 68(10): 386–399. DOI: 10.1190/1.1543224.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article Metrics

    Article views (181) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return