Volume 44 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
YANG Guangdong, TIAN Xujie, FAN Yong, TIAN Bin, LU Xiaochun. Blast resistance of reinforced concrete arches subjected to underwater explosions[J]. Explosion And Shock Waves, 2024, 44(2): 023101. doi: 10.11883/bzycj-2023-0235
Citation: YANG Guangdong, TIAN Xujie, FAN Yong, TIAN Bin, LU Xiaochun. Blast resistance of reinforced concrete arches subjected to underwater explosions[J]. Explosion And Shock Waves, 2024, 44(2): 023101. doi: 10.11883/bzycj-2023-0235

Blast resistance of reinforced concrete arches subjected to underwater explosions

doi: 10.11883/bzycj-2023-0235
  • Received Date: 2023-07-04
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-30
  • Publish Date: 2024-02-06
  • As common structures in hydraulic engineering, the arch structures may suffer from explosion load during their operation life. In order to explore the dynamic response characteristics and failure features of reinforced concrete arches subjected to underwater explosions, two reinforced concrete arch specimens were fabricated and underwater explosion tests were carried out. The tests consisted of two groups: external explosion and internal explosion. 10 g emulsion explosives were used, and the minimum distance between the explosion source and the structure was 10 cm (the explosives were placed directly above or below the arch). The time history curves of water pressure and structural acceleration at typical sections of the arches during the explosion tests were recorded. Based on the Arbitrary Lagrange-Euler (ALE) algorithm, a multi-material dynamic coupling model, including air, water, explosive, and reinforced concrete arch was established. The initiation of explosive, the propagation of shock wave, the interaction between fluid and solid, and the dynamic response of the structure were considered in the numerical model. The reliability of the numerical model was verified by comparing the numerical results and the experimental results. With the calibrated numerical model, the difference of dynamic response of reinforced concrete arches under external explosion and internal explosion was further studied. The results show that more energy acts on the concrete arch, and the structural response is stronger when subjected to internal explosion. Large cracks occur at the vault and waist induced by external explosion. Compared with the external explosion, the number of cracks significantly increases under internal explosion, and cracks also appear at the spandrel. The ability of reinforced concrete arch to resist external explosive loads is significantly stronger than that of internal explosive loads although the explosive weight is the same. For concrete arches that are vulnerable to external explosions, high strength concrete or reinforced reinforcement can be appropriately used in the arch vault and waist. For concrete arches that may be subjected to internal explosions, protective nets can be set to make the explosion occur at a longer distance away from the structures, or high strength materials can be used to resist the overall deformation.
  • loading
  • [1]
    任伟, 盖轶婷, 张岗. 纤维复合材料加固初应力下的钢筋混凝土拱分析 [J]. 上海交通大学学报, 2015, 49(2): 232–238. DOI: 10.16183/j.cnki.jsjtu.2015.02.016.

    REN W, GAI Y T, ZHANG G. Analysis of RC arch strengthen by bonded FRP under initial stress [J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 232–238. DOI: 10.16183/j.cnki.jsjtu.2015.02.016.
    [2]
    周健南, 金丰年, 范华林, 等. 震后地下拱结构的抗冲击波动载能力评估 [J]. 工程力学, 2012, 29(2): 159–164,171.

    ZHOU J N, JIN F N, FAN H L, et al. Residual dynamic resistance of seismic damaged underground arch [J]. Engineering Mechanics, 2012, 29(2): 159–164,171.
    [3]
    ZHANG X, WANG P, JIANG M R, et al. CFRP strengthening reinforced concrete arches: strengthening methods and experimental studies [J]. Composite Structures, 2015, 131: 852–867. DOI: 10.1016/j.compstruct.2015.06.034.
    [4]
    杨绿峰, 陈致. 钢筋混凝土拱承载力分析的齐次广义屈服函数 [J]. 工程力学, 2023, 40(4): 71–79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734.

    YANG L F, CHEN Z. Homogeneous generalized yield function for bearing capacity analysis of reinforced concrete arch [J]. Engineering Mechanics, 2023, 40(4): 71–79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734.
    [5]
    TANG Z X, ZHOU Y Z, FENG J, et al. Concrete protective arches reinforced with BFRP bars: construction and quasi-static structural performances [J]. Tunnelling and Underground Space Technology, 2021, 108: 103731. DOI: 10.1016/j.tust.2020.103731.
    [6]
    TANG L Z, YU L, LUO X, et al. Shaking table test on the seismic response and reinforcement measures of double-arch tunnels in mountainous areas [J]. Tunnelling and Underground Space Technology, 2023, 139: 105232. DOI: 10.1016/j.tust.2023.105232.
    [7]
    CHEN W S, HAO H. Numerical study of a new multi-arch double-layered blast-resistance door panel [J]. International Journal of Impact Engineering, 2012, 43: 16–28. DOI: 10.1016/j.ijimpeng.2011.11.010.
    [8]
    周忠欣, 金丰年, 袁小军, 等. 侧向点爆炸作用下地下拱结构的动力响应 [J]. 爆炸与冲击, 2018, 38(3): 639–646. DOI: 10.11883/bzycj-2016-0295.

    ZHOU Z X, JIN F N, YUAN X J, et al. Dynamic response of underground arch structure under lateral point blast loads [J]. Explosion and Shock Waves, 2018, 38(3): 639–646. DOI: 10.11883/bzycj-2016-0295.
    [9]
    LIU G K, WANG W, LIU R C, et al. Deriving formulas of loading distribution on underground arch structure surface under close-in explosion [J]. Engineering Failure Analysis, 2020, 115: 104608. DOI: 10.1016/j.engfailanal.2020.104608.
    [10]
    吴克刚, 胡玉峰, 宋殿义, 等. 钢筋混凝土拱抗爆性能的数值模拟研究 [J]. 采矿技术, 2018, 18(6): 153–156. DOI: 10.3969/j.issn.1671-2900.2018.06.051.

    WU K G, HU Y F, SONG D Y, et al. Numerical simulation study on explosion resistance of reinforced concrete arch [J]. Mining Technology, 2018, 18(6): 153–156. DOI: 10.3969/j.issn.1671-2900.2018.06.051.
    [11]
    WANG P, JIANG M R, ZHOU J N, et al. Spalling in concrete arches subjected to shock wave and CFRP strengthening effect [J]. Tunnelling and Underground Space Technology, 2018, 74: 10–19. DOI: 10.1016/j.tust.2018.01.009.
    [12]
    XIAO Y, ZHU W Q, WU W C, et al. Damage modes and mechanism of RC arch slab under contact explosion at different locations [J]. International Journal of Impact Engineering, 2022, 170: 104360. DOI: 10.1016/j.ijimpeng.2022.104360.
    [13]
    霍庆, 王逸平, 刘光昆, 等. 地下拱形结构侧顶爆炸的破坏模式及影响因素 [J]. 兵工学报, 2021, 42(S1): 105–116. DOI: 10.3969/j.issn.1000-1093.2021.S1.014.

    HUO Q, WANG Y P, LIU G K, et al. Failure mode and influencing factors of underground arched structure subjected to side top blast [J]. Acta Armamentarii, 2021, 42(S1): 105–116. DOI: 10.3969/j.issn.1000-1093.2021.S1.014.
    [14]
    陈昊, 卢浩, 孙善政, 等. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律 [J]. 爆炸与冲击, 2023, 43(8): 085104. DOI: 10.11883/bzycj-2022-0260.

    CHEN H, LU H, SUN S Z, et al. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons [J]. Explosion and Shock Waves, 2023, 43(8): 085104. DOI: 10.11883/bzycj-2022-0260.
    [15]
    周听清. 爆炸动力学及其应用 [M]. 合肥: 中国科学技术大学出版社, 2001: 108–118.
    [16]
    闫秋实, 宁素瑜, 杜修力, 等. 水中近场爆炸作用下钢筋混凝土桩毁伤效应研究 [J]. 北京工业大学学报, 2019, 45(2): 153–159. DOI: 10.11936/bjutxb2017110011.

    YAN Q S, NING S Y, DU X L, et al. Damage effect for a typical reinforced concrete pile under the near field explosion in water [J]. Journal of Beijing University of Technology, 2019, 45(2): 153–159. DOI: 10.11936/bjutxb2017110011.
    [17]
    刘靖晗, 唐廷, 韦灼彬, 等. 水下爆炸对高桩码头毁伤效应的试验研究 [J]. 爆炸与冲击, 2020, 40(11): 105–11408. DOI: 10.11883/bzycj-2019-0467.

    LIU J H, TANG T, WEI Z B, et al. Experimental research in damage effects of high-piled wharf under underwater explosion [J]. Explosion and Shock Waves, 2020, 40(11): 105–114. DOI: 10.11883/bzycj-2019-0467.
    [18]
    ZHAO H N, ZHAO X H, FANG H Y, et al. Experimental investigation of steel fiber reinforced concrete slabs subjected to underwater contact explosions [J]. Ocean Engineering, 2023, 281: 114664. DOI: 10.1016/j.oceaneng.2023.114664.
    [19]
    贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.
    [20]
    YANG G D, WANG G H, LU W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions [J]. Ocean Engineering, 2019, 181: 252–266. DOI: 10.1016/j.oceaneng.2019.04.031.
    [21]
    WEN Y B, CHI H, LAI Z C, et al. Experimental and numerical investigation on saturated concrete subjected to underwater contact explosion [J]. Construction and Building Materials, 2023, 384: 131465. DOI: 10.1016/j.conbuildmat.2023.131465.
    [22]
    LIU Z P, LI H, LI L. Anti-explosion performance analysis of marine interdiction system based on ALE method [J]. Heliyon, 2023, 9(3): e13873. DOI: 10.1016/j.heliyon.2023.e13873.
    [23]
    HERNANDEZ C, MARANON A, ASHCROFT I A, et al. A computational determination of the Cowper-Symonds parameters from a single Taylor test [J]. Applied Mathematical Modelling, 2013, 37(7): 4698–4708. DOI: 10.1016/j.apm.2012.10.010.
    [24]
    YUAN S J, HAO H, ZONG Z H, et al. A study of RC bridge columns under contact explosion [J]. International Journal of Impact Engineering, 2017, 109: 378–390. DOI: 10.1016/j.ijimpeng.2017.07.017.
    [25]
    LSTC. LS-DYNA keyword user’s manual: VOLUME II material models [M]. Livermore: Livermore Software Technology Corporation, 2017.
    [26]
    WEBSTER K G. Investigation of close proximity underwater explosion effects on a Ship-Like structure using the multi-material Arbitrary Lagrangian Eulerian finite element method [D]. Blacksburg: Virginia Polytechnic Institute and State University, 2007: 223–233.
    [27]
    HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J]. Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671.
    [28]
    LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: University of California Radiation Lab, 1968. DOI: 10.2172/4783904.
    [29]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999: 315–322.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (200) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return