LIU Muhao, ZHANG Xianfeng, TAN Mengting, BAO Kuo, HAN Guoqing, LI Yi, SUN Weijing. A constitutive model for ceramic materials including microstructural features and damage factor[J]. Explosion And Shock Waves, 2024, 44(1): 013102. doi: 10.11883/bzycj-2023-0237
Citation: LIU Muhao, ZHANG Xianfeng, TAN Mengting, BAO Kuo, HAN Guoqing, LI Yi, SUN Weijing. A constitutive model for ceramic materials including microstructural features and damage factor[J]. Explosion And Shock Waves, 2024, 44(1): 013102. doi: 10.11883/bzycj-2023-0237

A constitutive model for ceramic materials including microstructural features and damage factor

doi: 10.11883/bzycj-2023-0237
  • Received Date: 2023-07-04
  • Rev Recd Date: 2023-09-06
  • Available Online: 2023-10-30
  • Publish Date: 2024-01-11
  • In order to study the impact failure characteristics of ceramic materials with different microstructures, a constitutive model was constructed based on the Deshpande-Evan model which describes the inelastic deformation and fracture behavior of ceramic materials from the perspective of microstructure and the stress state of the material is calculated without considering the constraint condition. In order to verify the validity of the improved model, VUMAT subroutine programming method was used to combine it with ABAQUS finite element software, and it was applied to the analysis and simulation of the impact failure process of typical ceramic materials (YAG transparent ceramics). The effects of strain rate, stress triaxiality, grain size and crack distribution density on the dynamic mechanical behavior and damage evolution mechanism of YAG transparent ceramics were analyzed by using the improved model. The results show that with the increase of grain size and crack distribution density, the damage degree of YAG transparent ceramics increases, and the area of complete damage area increases. The influence of grain size on the macroscopic failure characteristics of YAG transparent ceramics is greater than that of crack distribution density. The failure strength and fracture strain of YAG transparent ceramics decrease with the increase of grain and crack distribution density. With the increase of the strain rate, the peak stress and fracture strain of YAG transparent ceramics under the influence of different factors (grain size as well as initial defect distribution density) increase. With the increase of grain size, the crack propagation speed of YAG transparent ceramics increases first and then flattens out, which is linearly related to the crack distribution density coefficient. The improved model can describe the influence of YAG transparent ceramic microstructure on its macroscopic failure characteristics, and provide support for further analysis of the influence of microstructure on the macroscopic failure characteristics of ceramic materials.
  • [1]
    胡泽望, 陈肖朴, 刘欣, 等. 微量SiO2添加对Pr: Lu3Al5O12陶瓷光学及闪烁性能的影响 [J]. 无机材料学报, 2020, 35(7): 796–802. DOI: 10.15541/jim20190418.

    HU Z W, CHEN X P, LIU X, et al. Trace SiO2 addition on optical and scintillation property of Pr: Lu3Al5O12 ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 796–802. DOI: 10.15541/jim20190418.
    [2]
    卢绪高. 轧膜成型氮化硅陶瓷的组织结构与导热性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [3]
    TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [4]
    RAJENDRAN A M, KROUPA J L. Impact damage model for ceramic materials [J]. Journal of Applied Physics, 1989, 66(8): 3560–3565. DOI: 10.1063/1.344085.
    [5]
    STEINBERG D J. Computer studies of the dynamic strength of ceramics [C]//Proceedings of the 18th International Symposium on Shock Waves. Senda: Springer, 1991: 415–422. DOI: 10.1007/978-3-642-77648-9_64.
    [6]
    JOHNSON G R, HOLMQUIST T J. A computational constitutive model for brittle materials subjected to large strains, high strain rates, and high pressures [M]// Shock Wave and High-Strain-Rate Phenomena in Materials. CRC Press, 1992: 1075–1082. DOI: 10.1115/1.4004326.
    [7]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [8]
    JOHNSON G R, HOLMQUIST T J, BEISSEL S R. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 2003, 94(3): 1639–1646. DOI: 10.1063/1.1589177.
    [9]
    WILKINS M. Second progress report of light armor program [R]. Livermore: Lawrence Livermore National Laboratory, 1967. DOI: 10.2172/7156835.
    [10]
    CHAKRABORTY S, ISLAM R I, SHAW A, et al. A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures [J]. Composite Structures, 2017, 164: 263–276. DOI: 10.1016/j.compstruct.2016.12.064.
    [11]
    REN H L, ZHUANG X Y, RABCZUK T. Implementation of GTN model in dual-horizon peridynamics [J]. Procedia Engineering, 2017, 197: 224–232. DOI: 10.1016/j.proeng.2017.08.099.
    [12]
    唐瑞涛, 徐柳云, 文鹤鸣, 等. 陶瓷材料宏观动态新本构模型 [J]. 高压物理学报, 2020, 34(4): 044201. DOI: 10.11858/gywlxb.20190863.

    TANG R T, XU L Y, WEN H M, et al. A macroscopic dynamic constitutive model for ceramic materials [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. DOI: 10.11858/gywlxb.20190863.
    [13]
    RAJENDRAN A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact Engineering, 1994, 15(6): 749–768. DOI: 10.1016/0734-743x(94)90033-h.
    [14]
    RAJENDRAN A M, GROVE D J. Modeling the shock response of silicon carbide, boron carbide and titanium diboride [J]. International Journal of Impact Engineering, 1996, 18(6): 611–631. DOI: 10.1016/0734-743x(96)89122-6.
    [15]
    ESPINOSA H D, ZAVATTIERI P D, DWIVEDI S K. A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 1909–1942. DOI: 10.1016/s0022-5096(98)00027-1.
    [16]
    任会兰, 宁建国. 冲击压缩下准脆性材料含微裂纹损伤的本构模型 [J]. 材料工程, 2007(3): 18–21. DOI: 10.3969/j.issn.1001-4381.2007.03.005.

    REN H L, NING J G. Micro-cracks damage constitutive model of quasi-brittle materials subjected to shock compression [J]. Journal of Materials Engineering, 2007(3): 18–21. DOI: 10.3969/j.issn.1001-4381.2007.03.005.
    [17]
    任会兰, 宁建国. 强冲击载荷下氧化铝陶瓷的力学特性及本构模型 [J]. 北京理工大学学报, 2007, 27(9): 761–764, 796. DOI: 10.3969/j.issn.1001-0645.2007.09.003.

    REN H L, NING J G. Mechanical characteristics and constitutive model of alumina ceramic subjected to shock loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(9): 761–764, 796. DOI: 10.3969/j.issn.1001-0645.2007.09.003.
    [18]
    ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489–521. DOI: 10.1007/BF00878002.
    [19]
    WANG D, ZHAO J, ZHOU Y H, et al. Extended finite element modeling of crack propagation in ceramic tool materials by considering the microstructural features [J]. Computational Materials Science, 2013, 77: 236–244. DOI: 10.1016/j.commatsci.2013.04.045.
    [20]
    VIGLIOTTI A, DESHPANDE V S, PASINI D. Non linear constitutive models for lattice materials [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 44–60. DOI: 10.1016/j.jmps.2013.10.015.
    [21]
    DESHPANDE V S, EVANS A G. Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(10): 3077–3100. DOI: 10.1016/j.jmps.2008.05.002.
    [22]
    DESHPANDE V S, GAMBLE E A N, COMPTON B G, et al. A constitutive description of the inelastic response of ceramics [J]. Journal of the American Ceramic Society, 2011, 94(S1): s204–s214. DOI: 10.1111/j.1551-2916.2011.04516.x.
    [23]
    LAHIRI S K, SHAW A, RAMACHANDRA L S. On performance of different material models in predicting response of ceramics under high velocity impact [J]. International Journal of Solids and Structures, 2016, 176-177: 96–107. DOI: 10.1016/j.ijsolstr.2019.05.024.
    [24]
    GAMBLE E A, COMPTON B G, DESHPANDE V S, et al. Damage development in an armor ceramic under quasi-static indentation [J]. Journal of the American Ceramic Society, 2011, 94(S1): s215–s225. DOI: 10.1111/j.1551-2916.2011.04472.x.
    [25]
    ASHBY M F, HALLAM S D. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metallurgica, 1986, 34(3): 497–510. DOI: 10.1016/0001-6160(86)90086-6.
    [26]
    韩国庆, 张先锋, 谈梦婷, 等. 边缘冲击(EOI)作用下透明陶瓷破坏特性研究 [J]. 爆炸与冲击, 2022, 42(5): 053102. DOI: 10.11883/bzycj-2021-0292.

    HAN G Q, ZHANG X F, TAN M T, et al. Failure characteristics of three transparent ceramics materials under the edge-on impact loading [J]. Explosion and Shock Waves, 2022, 42(5): 053102. DOI: 10.11883/bzycj-2021-0292.
    [27]
    马坤, 李名锐, 陈春林, 等. 修正金属本构模型在超高速撞击模拟中的应用 [J]. 爆炸与冲击, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.

    MA K, LI M R, CHEN C L, et al. The application of a modified constitutive model of metals in the simulation of hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.
  • Cited by

    Periodical cited type(16)

    1. Jue Han,Hualin Fan. Dynamic properties of low-density expandable polystyrene concrete materials. Defence Technology. 2025(01): 94-108 .
    2. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 .
    3. 杜立兵,陈华,郝佳宁,邓志云,李子昌,朱慧敏. EPS颗粒混凝土改性现状及其发展趋势研究. 混凝土. 2024(05): 178-184 .
    4. 梅贤丞,马亚丽娜,李建贺,丁长栋,陈兴强,崔臻,白强强. 橡胶-砂混凝土耗能特性智能预测模型研究. 铁道工程学报. 2024(07): 113-120+126 .
    5. QinYong Ma,Kweku Darko Forson. Study on the energy evolution mechanism of low-temperature concrete under uniaxial compression. Sciences in Cold and Arid Regions. 2022(03): 162-172 .
    6. 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . 本站查看
    7. 于周平,杨伟军,黄登科,黄树鑫. 纤维对聚苯颗粒混凝土力学性能影响的研究. 混凝土. 2022(11): 68-72+76 .
    8. 孟龙,黄瑞源,蒋东,肖凯涛,李平. 不同强度混凝土高温下动态劈拉性能研究. 工程力学. 2021(03): 202-213 .
    9. 刘凤利,韦凯言,杨飞华,马保国,战佳宇,李沙. 聚乙烯醇纤维改性EPS混凝土性能试验研究. 功能材料. 2021(12): 12055-12060 .
    10. 王普,陈灯红,程卓群,刘苗苗,孙尚鹏. 单轴压缩下混凝土的能量演化规律. 长江科学院院报. 2020(04): 132-137 .
    11. 马巍,任建伟,胡俊,吴德义. 基于不同加载制度的轻骨料混凝土动态冲击性能. 硅酸盐通报. 2019(04): 974-982 .
    12. 张文华,吕毓静,刘鹏宇. EPS混凝土研究进展综述. 材料导报. 2019(13): 2214-2228 .
    13. 袁伟泽,徐干成,翁履谦,李成学,颉旭虎. 碱激发混凝土冲击力学性能研究. 防护工程. 2019(04): 17-20 .
    14. 胡俊,任建伟,吴德义. 冲击荷载下EPS混凝土细观动态损伤分析. 硅酸盐通报. 2018(06): 1903-1907+1913 .
    15. 孟宏睿,华凯,周诗坤,张蕾,崔波,杨叶. 改性再生EPS轻混凝土正交试验. 兰州理工大学学报. 2017(04): 137-140 .
    16. 牛家乐,钱昊,王荣鑫,巫绪涛. 基于MATLAB GUI的SHPB实验数据处理软件. 安徽水利水电职业技术学院学报. 2016(03): 14-17 .

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(4)

    Article Metrics

    Article views (320) PDF downloads(175) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return