Volume 44 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262
Citation: NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262

Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening

doi: 10.11883/bzycj-2023-0262
  • Received Date: 2023-08-02
  • Rev Recd Date: 2023-12-15
  • Available Online: 2024-01-07
  • Publish Date: 2024-02-06
  • The purpose of this research work is to look into the time-space evolution of plasma pressure for femtosecond pulse laser shock peening (fs-LSP). In this study, propose a model to understand plasma pressure over time-space process in fs-LSP based on the first principle, improved two temperature equations, and plasma hydrodynamic equations. Firstly analyze the plasma plume front location with respect to time by solving the plasma hydrodynamic equations. The simulated results by the electron DOS (density of state) femtosecond pulse laser shock peening model are in better agreement with the experiment results than the QEOS (quotidian equation of state) femtosecond pulse laser shock peening model. The DOS femtosecond pulse laser shock peening model was shown to be effective and superior. Then use the DOS model to calculate how the electron heat capacity and electron-phonon coefficient with respect to electron temperature. Electron heat capacity calculated by the QEOS model is larger than calculated by the electron DOS model, whereas the electron-phonon coefficient is the reverse. Moreover, the electron-phonon coefficient calculated by the QEOS model shows linear variation with respect to the electron temperature, which is the reverse of that calculated by the electron DOS model. Therefore, the electron DOS effect should be considered in two-temperature equations. Next see a graph of electron and lattice temperature with respect to time using the modified two-temperature equations to calculate. Increasing laser energy, decreasing pulse width, and considering the electron DOS effect will increase the electron’s peak temperature, and equilibrium temperature of electron and lattice systems, and reduce the electron-phonon relaxation time. Finally, we utilize the results of the two temperature equations as the initial condition to substitute into the plasma hydrodynamic equations to compute the plasma pressure. plasma peak pressure will rise as laser energy is increased, the pulse width is decreased, and the electron DOS effect is taken into account.
  • loading
  • [1]
    HU Y X, YAO Z Q, HU J. 3-D FEM simulation of laser shock processing [J]. Surface and Coatings Technology, 2006, 201(3/4): 1426–1435. DOI: 10.1016/j.surfcoat.2006.02.018.
    [2]
    吴先前, 段祝平, 黄晨光, 等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型 [J]. 爆炸与冲击, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.

    WU X Q, DUAN Z P, HUANG C G, et al. A coupling model for computing plasma pressure induced by laser shock peening [J]. Explosion and Shock Waves, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.
    [3]
    DEVAUX D, FABBRO R, TOLLIER L, et al. Generation of shock waves by laser-induced plasma in confined geometry [J]. Journal of Applied Physics, 1993, 74(4): 2268–2273. DOI: 10.1063/1.354710.
    [4]
    WU B X, SHIN Y C. Laser pulse transmission through the water breakdown plasma in laser shock peening [J]. Applied Physics Letters, 2006, 88(4): 041116. DOI: 10.1063/1.2168022.
    [5]
    WU X Q, DUAN Z P, SONG H W, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation [J]. Journal of Applied Physics, 2011, 110(5): 053112. DOI: 10.1063/1.3633266.
    [6]
    XIONG Q L, SHIMADA T, KITAMURA T, et al. Atomic investigation of effects of coating and confinement layer on laser shock peening [J]. Optics & Laser Technology, 2020, 131: 106409. DOI: 10.1016/j.optlastec.2020.106409.
    [7]
    RONDEPIERRE A, ÜNALDI S, ROUCHAUSSE Y, et al. Beam size dependency of a laser-induced plasma in confined regime: shortening of the plasma release. Influence on pressure and thermal loading [J]. Optics & Laser Technology, 2021, 135(1): 106689. DOI: 10.1016/j.optlastec.2020.106689.
    [8]
    WU B X, TAO S, LEI S T. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments [J]. Applied Surface Science, 2010, 256(13): 4376–4382. DOI: 10.1016/j.apsusc.2010.02.034.
    [9]
    NAKANO H, MIYAUTI S, BUTANI N, et al. Femtosecond laser peening of stainless steel [J]. Journal of Laser Micro/Nanoengineering, 2009, 4(1): 35–38. DOI: 10.2961/jlmn.2009.01.0007.
    [10]
    LEE D, KANNATEY-ASIBU JR E. Experimental investigation of laser shock peening using femtosecond laser pulses [J]. Journal of Laser Applications, 2011, 23(2): 022004. DOI: 10.2351/1.3573370.
    [11]
    AGEEV E I, BYCHENKOV V Y, IONIN A A, et al. Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness [J]. Applied Physics Letters, 2016, 109(21): 211902. DOI: 10.1063/1.4968594.
    [12]
    SANO T, EIMURA T, KASHIWABARA R, et al. Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions [J]. Journal of Laser Applications, 2017, 29(1): 012005. DOI: 10.2351/1.4967013.
    [13]
    HOPPIUS J S, KUKREJA L M, KNYAZEVA M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120–1124. DOI: 10.1016/j.apsusc.2017.11.145.
    [14]
    WANG H, PÖHL F, YAN K, et al. Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy [J]. Applied Surface Science, 2019, 471: 869–877. DOI: 10.1016/j.apsusc.2018.12.087.
    [15]
    AGEEV E I, ANDREEVA Y M, IONIN A A, et al. Single-shot femtosecond laser processing of Al-alloy surface: an interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification [J]. Optics & Laser Technology, 2020, 126: 106131. DOI: 10.1016/j.optlastec.2020.106131.
    [16]
    CHEN L, WANG Z S, GAO S, et al. Investigation on femtosecond laser shock peening of commercially pure copper without ablative layer and confinement layer in air [J]. Optics & Laser Technology, 2022, 153: 108207. DOI: 10.1016/j.optlastec.2022.108207.
    [17]
    TAN S, WU J J, ZHANG Y, et al. A model of ultra-short pulsed laser ablation of metal with considering plasma shielding and non-fourier effect [J]. Energies, 2018, 11(11): 3163. DOI: 10.3390/en11113163.
    [18]
    KIRAN KUMAR K, SAMUEL G L, SHUNMUGAM M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy [J]. Journal of Materials Processing Technology, 2019, 263: 266–275. DOI: 10.1016/j.jmatprotec.2018.08.028.
    [19]
    FAIRAND B P, CLAUER A H. Laser generation of high-amplitude stress waves in materials [J]. Journal of Applied Physics, 1979, 50(3): 1497–1502. DOI: 10.1063/1.326137.
    [20]
    FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry [J]. Journal of Applied Physics, 1990, 68(2): 775–784. DOI: 10.1063/1.346783.
    [21]
    PEYRE P, SOLLIER A, CHAIEB I, et al. FEM simulation of residual stresses induced by laser peening [J]. The European Physical Journal Applied Physics, 2003, 23(2): 83–98. DOI: 10.1051/epjap:2003037.
    [22]
    WU B X, SHIN Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments [J]. Journal of Applied Physics, 2005, 97(11): 113517. DOI: 10.1063/1.1915537.
    [23]
    LAVILLE S, VIDAL F, JOHNSTON T W, et al. Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors [J]. Physical Review E, 2002, 66(6): 066415. DOI: 10.1103/PhysRevE.66.066415.
    [24]
    RETHFELD B, SOKOLOWSKI-TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation [J]. Applied Physics A, 2004, 79(4): 767–769. DOI: 10.1007/s00339-004-2805-9.
    [25]
    WU B X, SHIN Y C. A simple model for high fluence ultra-short pulsed laser metal ablation [J]. Applied Surface Science, 2007, 253(8): 4079–4084. DOI: 10.1016/j.apsusc.2006.09.007.
    [26]
    ALEXOPOULOU V E, MARKOPOULOS A P. A critical assessment regarding two-temperature models: an investigation of the different forms of two-temperature models, the various ultrashort pulsed laser models and computational methods [J]. Archives of Computational Methods in Engineering, 2023, 31(6). DOI: 10.1007/s11831-023-09974-1.
    [27]
    LIN Z B, ZHIGILEI L V, CELLI V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium [J]. Physical Review B, 2008, 77(7): 075133. DOI: 10.1103/PhysRevB.77.075133.
    [28]
    ZHANG Z Y, NIAN Q, DOUMANIDIS C C, et al. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing [J]. Journal of Applied Physics, 2018, 123(5): 054901. DOI: 10.1063/1.5021894.
    [29]
    WU B X, SHIN Y C. A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening [J]. Journal of Applied Physics, 2007, 101(2): 023510. DOI: 10.1063/1.2426981.
    [30]
    ZHANG N, ZHU X N, YANG J J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum [J]. Physical Review Letters, 2007, 99(16): 167602. DOI: 10.1103/PhysRevLett.99.167602.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (131) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return