Volume 44 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295
Citation: CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295

Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen

doi: 10.11883/bzycj-2023-0295
  • Received Date: 2023-08-16
  • Rev Recd Date: 2023-11-16
  • Available Online: 2024-01-11
  • Publish Date: 2024-04-07
  • In order to further reveal the characteristic of metal mesh to inhibit the flame propagation of hydrogen-methane premixed mixture, hydrogen and methane mixed gas with hydrogen mixing ratio of 0%, 10%, 20% and 30% were selected to conduct the experimental investigation of the effect of hydrogen mixing ratio inhibiting the fire processing through wire mesh with varied size in an explosion pipeline with an inner diameter of 60 mm and a total visible length of 1024 mm. Firstly, the flame propagation process was recorded by a high-speed camera, and the effect of hydrogen mixing ratio on fire resistance of wire mesh with different mesh numbers and the change of flame morphology were analyzed. Secondly, the average velocity of flame front movement was calculated according to the interval of 50 mm, and the flame propagation velocity within the visible area of the pipeline was analyzed. The interaction law between the metal wire mesh and the flame was mainly characterized by the flame propagation velocity on both sides of the metal wire mesh. The results show that with the increase of hydrogen content, the difficulty of flame retardancy of metal wire mesh increases, and the flame retardancy effect of metal wire mesh can transition from success to failure, and the impact on flame propagation may shift from inhibition to promotion. When the wire mesh fails to resist the fire, the wire mesh will cause the flame to fold and cause the flame to accelerate, but the first appearance of the tulip flame is delayed. With the increase of hydrogen mixing ratio, the acceleration phenomenon of flame passing through the wire mesh is more obvious. Increasing the mesh number of wire mesh can improve the fire resistance of wire mesh to hydrogen-methane premixed flame. The larger the mesh number, the stronger the fire resistance. More than 60 mesh wire mesh can effectively quench hydrogen and methane premixed flame.
  • loading
  • [1]
    ZOU C N, XIONG B, XUE H Q, et al. The role of new energy in carbon neutral [J]. Petroleum Exploration and Development, 2021, 48(2): 480–491. DOI: 10.1016/S1876-3804(21)60039-3.
    [2]
    GONDAL I A, SAHIR M H. Prospects of natural gas pipeline infrastructure in hydrogen transportation [J]. International Journal of Energy Research, 2012, 36(15): 1338–1345. DOI: 10.1002/er.1915.
    [3]
    SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [4]
    马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.
    [5]
    CAI P, LIU Z Y, LI P L, et al. Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel [J]. Energy, 2023, 265: 126302. DOI: 10.1016/j.energy.2022.126302.
    [6]
    PALMER K N. The quenching of flame by wire gauzes [J]. Symposium (International) on Combustion, 1958, 7(1): 497–503. DOI: 10.1016/s0082-0784(58)80084-3.
    [7]
    PALMER K N, TONKIN P S. The quenching of flames of various fuels in narrow apertures [J]. Combustion and Flame, 1963, 7: 121–127. DOI: 10.1016/0010-2180(63)90169-X.
    [8]
    喻健良, 孟伟, 王雅杰. 多层丝网结构抑制管内气体爆炸的试验 [J]. 天然气工业, 2005, 25(6): 116–118. DOI: 10.3321/j.issn:1000-0976.2005.06.036.

    YU J L, MENG W, WANG Y J. Experiment to suppress gas explosion in pipe with structure of multi-layer wire mesh [J]. Natural Gas Industry, 2005, 25(6): 116–118. DOI: 10.3321/j.issn:1000-0976.2005.06.036.
    [9]
    CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69–77. DOI: 10.1016/j.jlp.2016.11.017.
    [10]
    童宇, 刘天生. 金属网对瓦斯爆炸抑制作用的实验研究 [J]. 中北大学学报(自然科学版), 2018, 39(5): 591–594. DOI: 10.3969/j.issn.1673-3193.2018.05.018.

    TONG Y, LIU T S. Experiment of suppressing the gas explosion with metal mesh [J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 591–594. DOI: 10.3969/j.issn.1673-3193.2018.05.018.
    [11]
    喻健良, 孟伟, 王雅杰. 评价多层丝网结构阻火性能的试验研究 [J]. 含能材料, 2005, 13(6): 416–420. DOI: 10.3969/j.issn.1006-9941.2005.06.019.

    YU J L, MENG W, WANG Y J. Appraisal of capability of flame arrest by multi-layer wire mesh structure [J]. Chinese Journal of Energetic Materials, 2005, 13(6): 416–420. DOI: 10.3969/j.issn.1006-9941.2005.06.019.
    [12]
    喻健良, 蔡涛, 李岳, 等. 丝网结构对爆炸气体淬熄的试验研究 [J]. 燃烧科学与技术, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.

    YU J L, CAI T, LI Y, et al. Experiment to quench explosive gas with structure of wire mesh [J]. Journal of Combustion Science and Technology, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.
    [13]
    JU X Y, MATSUOKA T, YAMAZAKI T, et al. Effect of single-layer metal wire mesh insertion on the burning behavior of laminar coflow propane/air diffusion flames [J]. Combustion and Flame, 2021, 234: 111612. DOI: 10.1016/j.combustflame.2021.111612.
    [14]
    ZHANG S F, WANG Z R, ZUO Q Q, et al. Suppression effect of explosion in linked spherical vessels and pipelines impacted by wire-mesh structure [J]. Process Safety Progress, 2016, 35(1): 68–75. DOI: 10.1002/prs.11728.
    [15]
    陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究 [J]. 中国安全科学学报, 2014, 24(7): 33–36. DOI: 10.16265/j.cnki.issn1003-3033.2014.07.014.

    CHEN P, YANG Y B, GUO S L, et al. Study on influence of metal mesh on methane/air premixed mixture flame propagation [J]. China Safety Science Journal, 2014, 24(7): 33–36. DOI: 10.16265/j.cnki.issn1003-3033.2014.07.014.
    [16]
    孙玮康, 陈先锋, 冯梦梦, 等. 金属丝网对甲烷/空气爆燃火焰传播特性的影响 [J]. 高压物理学报, 2020, 34(5): 055201. DOI: 10.11858/gywlxb.20200536.

    SUN W K, CHEN X F, FENG M M, et al. Effect of the wire mesh structure on the flame characteristics of methane/air deflagration [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055201. DOI: 10.11858/gywlxb.20200536.
    [17]
    JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809–14820. DOI: 10.1016/j.ijhydene.2017.03.232.
    [18]
    JIN K Q, WANG Q S, DUAN Q L, et al. Effect of metal wire mesh on premixed H2/air flame quenching behaviors in a closed tube [J]. Process Safety and Environmental Protection, 2021, 146: 770–778. DOI: 10.1016/j.psep.2020.12.020.
    [19]
    JIN K Q, WANG Q S, DUAN Q L, et al. Effect of single-layer wire mesh on premixed methane/air flame dynamics in a closed pipe [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32664–32675. DOI: 10.1016/j.ijhydene.2020.08.159.
    [20]
    CHENG F M, CHANG Z C, LUO Z M, et al. Large eddy simulation and experimental study of the effect of wire mesh on flame behaviours of methane/air explosions in a semi-confined pipe [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104258. DOI: 10.1016/j.jlp.2020.104258.
    [21]
    路长, 于子凯, 刘洋, 等. 氢气对预混甲烷/空气燃爆过程的影响 [J]. 安全与环境学报, 2017, 17(6): 2240–2245. DOI: 10.13637/j.issn.1009-6094.2017.06.038.

    LU C, YU Z K, LIU Y, et al. Impact of hydrogen addition on the premixed methane/air deflagration process [J]. Journal of Safety and Environment, 2017, 17(6): 2240–2245. DOI: 10.13637/j.issn.1009-6094.2017.06.038.
    [22]
    尚融雪, 杨悦, 高俊豪, 等. 掺氢天然气层流火焰传播速度试验研究 [J]. 中国安全科学学报, 2019, 29(11): 103–108. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.017.

    SHANG R X, YANG Y, GAO J H, et al. Experimental study on laminar flame speed of H2/CH4/air mixtures [J]. China Safety Science Journal, 2019, 29(11): 103–108. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.017.
    [23]
    王晓飞. 石油化工企业爆炸性气体混合物分级计算方法分析 [J]. 炼油技术与工程, 2021, 51(4): 47–50. DOI: 10.3969/j.issn.1002-106X.2021.04.012.

    WANG X F. Study on grading calculation method of explosive gas mixture in petrochemical enterprises [J]. Petroleum Refinery Engineering, 2021, 51(4): 47–50. DOI: 10.3969/j.issn.1002-106X.2021.04.012.
    [24]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 13347—2010 石油气体管道阻火器 [S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 13347—2010 Flame arresters for petroleum gas pipeline systems [S]. Beijing: Standards Press of China, 2011.
    [25]
    陈先锋, 孙金华, 姚礼殷, 等. Tulip火焰形成过程中的细微结构特性 [J]. 燃烧科学与技术, 2008, 14(4): 350–354. DOI: 10.3321/j.issn:1006-8740.2008.04.012.

    CHEN X F, SUN J H, YAO L Y, et al. Characteristics of fine structure during tulip flame forming [J]. Journal of Combustion Science and Technology, 2008, 14(4): 350–354. DOI: 10.3321/j.issn:1006-8740.2008.04.012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (100) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return