Turn off MathJax
Article Contents
GAO Huiyao, ZHAO Zhenyu, ZHANG Lei, ZHANG Dujiang, ZHANG Zhiyang, LU Tianjian. Research on impact resistance of water-filled metal honeycomb sandwich beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0323
Citation: GAO Huiyao, ZHAO Zhenyu, ZHANG Lei, ZHANG Dujiang, ZHANG Zhiyang, LU Tianjian. Research on impact resistance of water-filled metal honeycomb sandwich beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0323

Research on impact resistance of water-filled metal honeycomb sandwich beams

doi: 10.11883/bzycj-2023-0323
  • Received Date: 2023-09-07
  • Rev Recd Date: 2024-01-23
  • Available Online: 2024-04-15
  • Based on the background of the further requirements for lightweight, explosion and impact resistance, and vibration reduction and noise reduction in the development of honeycomb structure in engineering science, a liquid metal honeycomb sandwich structure was proposed, and the preparation, impact experiments, and numerical simulation research of the liquid metal honeycomb sandwich structure were carried out. A preparation method for the liquid-filled metallic honeycomb sandwich structure was developed to meet the requirements of effective sealing of the internal liquid, adjustable liquid filling content, and controllable filling position within the structure. The first level light gas gun was used to launch foam bullets to simulate the explosion shock wave load, and the dynamic response of the structure under different impact velocities was obtained. At the same time, the commercial finite element software Abaqus/Explicit was used to carry out numerical simulation of the impact response of foam bullets in the metal honeycomb sandwich structure using the smooth particle hydrodynamics method, and further discussed the impact speed of foam bullets, the liquid content in the cell on the impact resistance and post-impact vibration characteristics of the structure. The results indicate that the liquid-filled structure exhibits superior impact resistance and post-impact vibration performance compared to the unfilled structure. Moreover, with an increase in the liquid content, the displacement response of the liquid-filled structure shows a monotonic decrease, while the damping ratio demonstrates an increasing trend. When the core is fully filled with liquid, the structure achieves optimal impact resistance performance, with a decrease in peak displacement of approximately 13.66% compared to the unfilled structure, and an increase in damping ratio by approximately 1.6 times. The aforementioned research establishes the foundation for the extensive application of liquid-filled metallic honeycomb composite structures in the field of impact protection.
  • loading
  • [1]
    ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. DOI: 10.1016/j.marstruc.2014.11.007.
    [2]
    魏子涵, 赵振宇, 叶帆, 等. 金属蜂窝夹层结构抗水下爆炸特性 [J]. 爆炸与冲击, 2021, 41(8): 083104. DOI: 10.11883/bzycj-2020-0392.

    WEI Z H, ZHAO Z Y, YE F, et al. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock [J]. Explosion and Shock Waves, 2021, 41(8): 083104. DOI: 10.11883/bzycj-2020-0392.
    [3]
    WADLEY H N G, BØRVIK T, OLOVSSON L, et al. Deformation and fracture of impulsively loaded sandwich panels [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 674–699. DOI: 10.1016/j.jmps.2012.07.007.
    [4]
    赵振宇, 周贻来, 任建伟, 等. 浅埋炸药爆炸形貌及其冲击作用效应 [J]. 爆炸与冲击, 2022, 42(4): 042303. DOI: 10.11883/bzycj-2021-0376.

    ZHAO Z Y, ZHOU Y L, REN J W, et al. Explosion morphology and impacting effects of shallow-buried explosives [J]. Explosion and Shock Waves, 2022, 42(4): 042303. DOI: 10.11883/bzycj-2021-0376.
    [5]
    赵振宇, 任建伟, 金峰, 等. 浅埋炸药爆炸动力学研究进展 [J]. 应用力学学报, 2022, 39(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.

    ZHAO Z Y, REN J W, JIN F, et al. Progress in research on explosion dynamics of shallow-buried explosives [J]. Chinese Journal of Applied Mechanics, 2022, 39(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.
    [6]
    ZHANG D J, ZHAO Z Y, DU S F, et al. Dynamic response of ultralight all-metallic sandwich panel with 3D tube cellular core to shallow-buried explosives [J]. Science China Technological Sciences, 2021, 64(7): 1371–1388. DOI: 10.1007/s11431-020-1774-1.
    [7]
    LI X, KANG R, LI C, et al. Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading [J]. Composite Structures, 2023, 311: 116791. DOI: 10.1016/j.compstruct.2023.116791.
    [8]
    RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
    [9]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
    [10]
    CHEN X, SURANI F B, KONG X G, et al. Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid [J]. Applied Physics Letters, 2006, 89(24): 241918. DOI: 10.1063/1.2405852.
    [11]
    LAKES R S. High damping composite materials: effect of structural hierarchy [J]. Journal of Composite Materials, 2002, 36(3): 287–297. DOI: 10.1177/0021998302036003538.
    [12]
    AKTAY L, TOKSOY A K, GÜDEN M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis [J]. Materials & Design, 2006, 27(7): 556–565. DOI: 10.1016/j.matdes.2004.12.019.
    [13]
    CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. DOI: 10.1016/S0263-8231(01)00006-4.
    [14]
    MOZAFARI H, MOLATEFI H, CRUPI V, et al. In plane compressive response and crushing of foam filled aluminum honeycombs [J]. Journal of Composite Materials, 2015, 49(26): 3215–3228. DOI: 10.1177/0021998314561069.
    [15]
    VAZIRI A, XUE Z Y, HUTCHINSON J W. Metal sandwich plates with polymer foam-filled cores [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 97–127. DOI: 10.2140/jomms.2006.1.97.
    [16]
    包正. 高速冲击载荷下颅脑流固耦合跨尺度模拟与损伤研究 [D]. 湘潭: 湖南科技大学, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000003.

    BAO Z. The simulation and injure study of cross-scale and fluid-solid coupling head model under high-speed impact loading [D]. Xiangtan: Hunan University of Science and Technology, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000003.
    [17]
    RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/J.IJIMPENG.2004.07.012.
    [18]
    张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证 [J]. 兵工学报, 2022, 43(8): 1966–1976. DOI: 10.12382/bgxb.2021.0409.

    ZHANG D J, ZHAO Z Y, HE L, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model [J]. Acta Armamentarii, 2022, 43(8): 1966–1976. DOI: 10.12382/bgxb.2021.0409.
    [19]
    DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005–1038. DOI: 10.1016/j.ijimpeng.2004.06.004.
    [20]
    ITOH S, HAMASHIMA H, MURATA K, et al. Determination of JWL parameters from underwater explosion test [J]. Science & Technology of Energetic Materials, 2002, 64: 248–253.
    [21]
    RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures, 2006, 43(6): 1746–1763. DOI: 10.1016/j.ijsolstr.2005.06.079.
    [22]
    ZHAO Z Y, ZHANG D J, CHEN W J, et al. An analytical model of blast resistance for all-metallic sandwich panels subjected to shallow-buried explosives [J]. International Journal of Mechanics and Materials in Design, 2022, 18(4): 873–892. DOI: 10.1007/s10999-022-09605-w.
    [23]
    WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(6)

    Article Metrics

    Article views (13) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return