Turn off MathJax
Article Contents
GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives under slow cook-off[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0353
Citation: GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives under slow cook-off[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0353

Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives under slow cook-off

doi: 10.11883/bzycj-2023-0353
  • Received Date: 2023-09-28
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-03-29
  • In order to study the pressure parameters of HMX-based aluminized pressed explosives at the ignition moment of slow cook-off, slow cook-off test were designed at 0.1 and 1℃/min heating rates, and an internal multi-point temperature measurements were taken inside explosives. On this foundation, based on the universal cook-off model of explosives, combining the multi-step decomposition reaction mechanism of HMX-based explosives with the reaction of aluminum powder, and considering the phase transition process in the decomposition of HMX-based explosives, a slow cook-off calculation model for pressure-department reaction rate of HMX-based aluminized pressed explosives was established. This study wrote the calculation model as a user defined function and imported it into Ansys Fluent to perform calculations. Slow cook-off tests were conducted on large aspect ratio (5:1) HMX-based aluminized pressed explosive charges with 4 mm shell thickness at heating rates of 0.1℃/min and 1℃/min and compared with simulation results. And then, the numerical simulations of the temperature field and internal pressure changes were performed before ignition of the cook-off bomb at heating rates of 0.055, 0.1, 0.2, 0.3, 0.5, and 1℃/min. It was found that at the heating rate of 0.1℃/min, after the test reaction, the end cover was ejected, the shell was axially cracked, and there was no powder left, which was judged to be a deflagration reaction; at the heating rate of 1℃/min, the shell was slightly deformed, with some powder left, and it was judged that a combustion reaction had occurred. The numerical calculations show that as the heat stimulus increases, the ignition temperature of the explosive tends to increase logarithmically, while the extent of reaction and internal pressure of the cook-off bomb tend to decrease exponentially. Before the HMX phase transition, the internal pressure inside the cook-off bomb grows slowly, after the HMX phase transition rapidly increasing, and finally it rises sharply near the ignition moment.
  • loading
  • [1]
    曾稼, 智小琦, 于永利, 等. 热刺激强度对DNAN基熔铸炸药烤燃响应特性的影响 [J]. 火炸药学报, 2018, 41(2): 131–136. DOI: 10.14077/j.issn.1007-7812.2018.02.005.

    ZENG J, ZHI X Q, YU Y L, et al. Effect of thermal stimulation intensity on cook-off response characteristics of DNAN based casting explosives [J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 131–136. DOI: 10.14077/j.issn.1007-7812.2018.02.005.
    [2]
    李凌峰, 韩秀凤, 沈飞, 等. 典型约束环境下HMX基温压炸药内爆释能特性 [J]. 火工品, 2022(2): 48–53. DOI: 10.3969/j.issn.1003-1480.2022.02.011.

    LI L F, HAN X F, SHEN F, et al. Internal explosion energy release characteristics of HMX-based thermos-baric explosive in typical confined environment [J]. Initiators and Pyrotechnics, 2022(2): 48–53. DOI:103969/j.issn.1003-1480.2022.02.011. DOI: 10.3969/j.issn.1003-1480.2022.02.011.
    [3]
    智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.

    ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
    [4]
    董泽霖, 屈可朋, 胡雪垚, 等. 约束方式和强度对HMX基压装含铝炸药慢烤响应特性的影响 [J]. 火炸药学报, 2023, 46(10): 897–904. DOI: 10.14077/j.issn.1007-7812.202212010.

    DONG Z L, QU K P, HU X Y, et al. Effect of restraint mode and strength on slow cook-off response characteristics of HMX-based pressed aluminized explosives [J]. Chinese Journal of Explosives and Propellants., 2023, 46(10): 897–904. DOI: 10.14077/j.issn.1007-7812.202212010.
    [5]
    沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/7812.2019.04.012.

    SHEN F, WANG S Q, WANG H. Slow cook-off response characteristics of HMX-based aluminized explosives under different constraint conditions [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 385–390. DOI:10.14077-7812.2019.04.012. DOI: 10.14077/7812.2019.04.012.
    [6]
    智小琦, 胡双启. 炸药装药密度对慢速烤燃响应特性的影响 [J]. 爆炸与冲击, 2013, 33(2): 221–224. DOI: 10.11883/1001-1455(2013)02-0221-04.

    ZHI X Q, HU S Q. Influences of charge densities on responses of explosives to slow cook-off [J]. Explosion and Shock Waves, 2013, 33(2): 221–224. DOI: 10.11883/1001-1455(2013)02-0221-04.
    [7]
    赵亮. 尺寸效应对炸药烤燃响应特性影响的研究[D]. 太原: 中北大学, 2018.

    ZHAO L. Research on the effect of size effect on the flaming characteristics of explosives [D]. Taiyuan: North University of China, 2018.
    [8]
    刘子德, 智小琦, 王帅, 等. 几何尺寸对DNAN基熔铸炸药慢烤响应特性的影响 [J]. 火炸药学报, 2019, 42(1): 63–68. DOI: 10.14077/j.issn.1007-7812.2019.01.010.

    LIU Z D, ZHI X Q, WANG S, et al. Effect of geometric dimensions on slow cook-off response characteristics of DNAN-based melt-casting explosive [J]. Chinese Journal of Explosives and Propellants, 2019, 42(1): 63–68. DOI: 10.14077/j.issn.1007-7812.2019.01.010.
    [9]
    马欣, 陈朗, 鲁峰, 等. 烤燃条件下HMX/TATB基混合炸药多步热分解反应计算 [J]. 爆炸与冲击, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.

    MA X, CHEN L, LU F, et al. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosives under cook-off conditions [J]. Explosion and Shock Waves, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.
    [10]
    DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
    [11]
    PERRY W L , GUNDERSON J A , DICKSON P M . Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems[C]//14th International Detonation Symposium. Coeur d'Alene, Idaho, United States, 2010.
    [12]
    HOBBS M L, KANESHIGE M J, ERIKSON W W. A "universal" cookoff model for explosives[C]//50th International Annual Conference of the Fraunhofer ICT. Karlsruhe, Germany, 2019.
    [13]
    范士锋, 董平, 李鑫, 等. 国外海军弹药安全性研究进展 [J]. 火炸药学报, 2017, 40(2): 101–106. DOI: 10.14077/j.issn.1007-7812.2017.02.019.

    FAN S F, DONG P, LI X, et al. Research progress in the safety of foreign naval ammunition [J]. Chinese Journal of Explosives and Propellants, 2017, 40(2): 101–106. DOI: 10.14077/j.issn.1007-7812.2017.02.019.
    [14]
    董泽霖, 屈可朋, 胡雪垚, 等. 升温速率对HMX基大长径比压装装药烤燃特性的影响研究 [J]. 火工品, 2023(4): 56–60. DOI: 10.3969/j.issn.1003-1480.2023.04.011.

    DONG Z L, QU K P, HU X Y, et al. Study on the effect of heating rate on the cook-off characteristics of HMX-based pressure charge with large aspect ratio [J]. Initiators and Pyrotechnics, 2023(4): 56–60. DOI: 10.3969/j.issn.1003-1480.2023.04.011.
    [15]
    封雪松, 冯晓军, 赵娟, 等. 铝粉含量和粒度对HMX基炸药空爆性能的影响 [J]. 爆破器材, 2018, 47(4): 10–15. DOI: 10.3969/j.issn.1001-8352.2018.04.002.

    FENG X S, FENG X J, ZHAO J, et al. Effect of content and particle size of aluminum powder on the air blast property of HMX-based explosive [J]. Explosive Materials, 2018, 47(4): 10–15. DOI: 10.3969/j.issn.1001-8352.2018.04.002.
    [16]
    HOBBS M L, KANESHIGE M J. Ignition experiments and models of a plastic bonded explosive (PBX 9502) [J]. The Journal of Chemical Physics, 2014, 140(12): 124203. DOI: 10.1063/1.4869351.
    [17]
    HENSON B. F. , SMILOWITZ L, ASAY B. W, et al. The β-δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. The Journal of Chemical. Physics., 2002, 117(8): 3780–3788. DOI: 10.1063/1.1495398.
    [18]
    周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法 [J]. 铸造, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.

    ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment [J]. Foundry, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.
    [19]
    HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [20]
    TARVER C M, TRAN T D. Thermal decomposition models for HMX-based plastic bonded explosives [J]. Combustion and Flame, 2004, 137(1/2): 50–62. DOI: 10.1016/j.combustflame.2004.01.002.
    [21]
    BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [22]
    韦世豪, 杜扬, 王世茂, 等. 不同形状受限空间内油气爆燃特性的实验研究 [J]. 中国安全生产科学技术, 2017, 13(5): 41–47. DOI: 10.11731/j.issn.1673-193x.2017.05.007.

    WEI S H, DU Y, WANG S M, et al. Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes [J]. Journal of Safety Science and Technology, 2017, 13(5): 41–47. DOI: 10.11731/j.issn.1673-193x.2017.05.007.
    [23]
    傅献彩, 沈文霞, 姚天扬, 等. 物理化学(上)[M]. 5版. 北京: 高等教育出版社, 2005: 99-103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (34) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return