Volume 44 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures[J]. Explosion And Shock Waves, 2024, 44(4): 045201. doi: 10.11883/bzycj-2023-0358
Citation: MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures[J]. Explosion And Shock Waves, 2024, 44(4): 045201. doi: 10.11883/bzycj-2023-0358

Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures

doi: 10.11883/bzycj-2023-0358
Funds:  LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 357-360.
  • Received Date: 2023-10-06
  • Rev Recd Date: 2024-01-14
  • Available Online: 2024-01-15
  • Publish Date: 2024-04-07
  • Decoupled charge structure is widely used in contour blasting for rock excavation engineering, and its efficacy in rock breaking is tied intricately to both the decoupling ratio and the transfer features of explosion energy. In this study, the analysis delves into the damage degree and failure patterns of cubic red sandstone samples through two groups of lab-scale blasting tests utilizing various charging modes. To precisely quantify the features of rock fragmentation size distribution (FSD) induced by blasting load, a three-parameter generalized extreme value (GEV) function was introduced. In addition, a three-dimensional finite element model was developed in ANSYS software. The numerical model was calibrated based on the tested results of sample R1 by comparing the fracture networks and FSD curves. This validated model was then deployed to model the rock fracture behavior under decoupled charge blasting, and the evolution of blasting cracks and explosion pressure inside the rock sample was reproduced. Moreover, the effects of axial and radial decoupled ratios and the choice of coupling medium on the rock fragmentation and fracture patterns were discussed. The results showed that the three-parameter GEV function can better characterize the rock fragmentation features resulting from blasting. Notably, the average size of the fragment decreases linearly with the decrease of the decoupling ratio, and the degree of fragmentation tends to be uniform. By comparing the energy distribution and damage levels of rock when using different coupling mediums, it was found that water as the coupling medium exhibits the highest efficiency in energy transfer, followed by wet sand and dry sand, and air has the lowest energy transfer efficiency. Furthermore, the theoretical stress transmission coefficient calculated by the equivalent wave impedance method can well reflect the rock fragmentation features and serve as a valuable reference for rock blasting in decoupled charge.
  • loading
  • [1]
    LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016.
    [2]
    付玉华, 李夕兵, 董陇军. 损伤条件下深部岩体巷道光面爆破参数研究 [J]. 岩土力学, 2010, 31(5): 1420–1426. DOI: 10.16285/j.rsm.2010.05.005.

    FU Y H, LI X B, DONG L J. Analysis of smooth blasting parameters for tunnels in deep damaged rock mass [J]. Rock and Soil Mechanics, 2010, 31(5): 1420–1426. DOI: 10.16285/j.rsm.2010.05.005.
    [3]
    LU W B, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. DOI: 10.1016/j.tust.2011.12.008.
    [4]
    叶志伟, 陈明, 魏东, 等. 不耦合装药爆破孔壁压力峰值的实验研究 [J]. 爆炸与冲击, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.

    YE Z W, CHEN M, WEI D, et al. Experimental study on the peak pressure of borehole wall in decoupling charge blasting [J]. Explosion and Shock Waves, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.
    [5]
    HUO X F, QIU X Y, SHI X Z, et al. Experimental and numerical investigation on the peak value and loading rate of borehole wall pressure in decoupled charge blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 170: 105535. DOI: 10.1016/j.ijrmms.2023.105535.
    [6]
    LANGEFORS U, KIHLSTRÖ M B. The modern technique of rock blasting [M]. 3rd ed. New York: John Wiley and Sons Incorporation, 1963.
    [7]
    PAINE R S, HOLMES D K, CLARK H E. Controlling overbreak by presplitting [M]//CLARK G B. Mining Research. Amsterdam: Elsevier, 1962.
    [8]
    张正宇, 卢文波, 刘美山, 等. 水利水电工程精细爆破概论 [M]. 北京: 中国水利水电出版社, 2009.
    [9]
    CHEN M, LU W B, YI C P. Blasting vibration criterion for a rock-anchored beam in an underground powerhouse [J]. Tunnelling and Underground Space Technology, 2007, 22(1): 69–79. DOI: 10.1016/j.tust.2006.03.005.
    [10]
    王伟, 李小春. 不耦合装药下爆炸应力波传播规律的试验研究 [J]. 岩土力学, 2010, 31(6): 1723–1728. DOI: 10.16285/j.rsm.2010.06.004.

    WANG W, LI X C. Experimental study of propagation law of explosive stress wave under condition of decouple charge [J]. Rock and Soil Mechanics, 2010, 31(6): 1723–1728. DOI: 10.16285/j.rsm.2010.06.004.
    [11]
    李桐, 陈明, 叶志伟, 等. 不同耦合介质爆破爆炸能量传递效率研究 [J]. 爆炸与冲击, 2021, 41(6): 062201. DOI: 10.11883/bzycj-2020-0381.

    LI T, CHEN M, YE Z W, et al. Study on the energy transfer efficiency of explosive blasting with different coupling medium [J]. Explosion and Shock Waves, 2021, 41(6): 062201. DOI: 10.11883/bzycj-2020-0381.
    [12]
    CHI L Y, WANG C, ZHANG Z X, et al. Experimental investigation of decoupled charge effect on rock fragmentation by blasting [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 3791–3806. DOI: 10.1007/s00603-022-02823-w.
    [13]
    YANG R S, DING C X, YANG L Y, et al. Study of decoupled charge blasting based on high-speed digital image correlation method [J]. Tunnelling and Underground Space Technology, 2019, 83: 51–59. DOI: 10.1016/j.tust.2018.09.031.
    [14]
    YANG J C, LIU Z X, LIU K W, et al. Study on the blasting damage of prestressed rock-like specimens with different coupling mediums [J]. International Journal of Impact Engineering, 2023, 181: 104758. DOI: 10.1016/j.ijimpeng.2023.104758.
    [15]
    LI X D, LIU K W, SHA Y Y, et al. Numerical investigation on rock fragmentation under decoupled charge blasting [J]. Computers and Geotechnics, 2023, 157: 105312. DOI: 10.1016/j.compgeo.2023.105312.
    [16]
    王志亮, 李永池. 工程爆破中径向水不耦合系数效应数值仿真 [J]. 岩土力学, 2005, 26(12): 1926–1930. DOI: 10.16285/j.rsm.2005.12.013.

    WANG Z L, LI Y C. Numerical simulation on effects of radial water-decoupling coefficient in engineering blast [J]. Rock and Soil Mechanics, 2005, 26(12): 1926–1930. DOI: 10.16285/j.rsm.2005.12.013.
    [17]
    ZHU Z M, XIE H P, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012.
    [18]
    YUAN W, WANG W, SU X B, et al. Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104133. DOI: 10.1016/j.ijrmms.2019.104133.
    [19]
    袁增森, 徐振洋, 潘博, 等. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟 [J]. 高压物理学报, 2022, 36(1): 015301. DOI: 10.11858/gywlxb.20210804.

    YUAN Z S, XU Z Y, PAN B, et al. Discrete element simulation of blasting damage characteristics of granite under different decoupling coefficients [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015301. DOI: 10.11858/gywlxb.20210804.
    [20]
    LI X D, LIU K W, SHA Y Y, et al. Investigation on radial fracturing around borehole under combined static stress and blasting [J]. Theoretical and Applied Fracture Mechanics, 2023, 127: 104038. DOI: 10.1016/j.tafmec.2023.104038.
    [21]
    SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 33–38. DOI: 10.1016/j.ijrmms.2017.07.014.
    [22]
    李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学(北京), 2017.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology, Beijing, 2017.
    [23]
    XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: 10.1016/j.tust.2017.03.009.
    [24]
    LI S L, LING T L, LIU D S, et al. Determination of rock mass parameters for the RHT model based on the Hoek-Brown criterion [J]. Rock Mechanics and Rock Engineering, 2023, 56(4): 2861–2877. DOI: 10.1007/s00603-022-03189-9.
    [25]
    BORRVALL T, SWEDEN L, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, 2011.
    [26]
    马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [27]
    DEHGHAN BANADAKI M M, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [28]
    LIU K W, QIU T, LI X D, et al. Deep rock blasting using decoupled charge with different coupling mediums [J]. International Journal of Geomechanics, 2023, 23(8): 04023112. DOI: 10.1061/IJGNAI.GMENG-8179.
    [29]
    TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. DOI: 10.1016/j.compgeo.2020.103846.
    [30]
    MA S Z, LIU K W, YANG J C. Investigation of blast-induced rock fragmentation and fracture characteristics with different decoupled charge structures [J]. International Journal of Impact Engineering, 2024, 185: 104855. DOI: 10.1016/j.ijimpeng.2023.104855.
    [31]
    WANG H C, WANG Z L, WANG J G, et al. Effect of confining pressure on damage accumulation of rock under repeated blast loading [J]. International Journal of Impact Engineering, 2021, 156: 103961. DOI: 10.1016/j.ijimpeng.2021.103961.
    [32]
    白金泽. LS-DYNA3D理论基础与实例分析 [M]. 北京: 科学出版社, 2005: 167–170.
    [33]
    李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 357–360.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(7)

    Article Metrics

    Article views (174) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return