Turn off MathJax
Article Contents
MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagation in a semi-enclosed space[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0363
Citation: MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagation in a semi-enclosed space[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0363

Characteristics of hydrogenated magnesium dust explosion flame propagation in a semi-enclosed space

doi: 10.11883/bzycj-2023-0363
  • Received Date: 2023-10-08
  • Rev Recd Date: 2024-03-05
  • Available Online: 2024-03-05
  • In the experiment conducted using a custom-built 5L dust explosion flame propagation apparatus, the focus was on studying the characteristics of the flame propagation of magnesium hydride (MgH2) dust explosions within a semi-enclosed space.The results of the experiment showed that as the concentration of MgH2 dust increased,the time required for the MgH2 dust explosion flame to transition from ignition to stable propagation decreased initially,but then increased as the dust concentration further increased.Similarly, the width of the preheating zone followed the same pattern.Initially, it decreased with increasing dust concentration,but once the concentration reached a certain threshold,it started to increase.Beyond that,the flame brightness, smoothness of the flame front, and flame propagation speed showed similar trends.They initially increased as the MgH2 dust concentration increased,suggesting enhanced combustion activity.However, as the concentration further increased,these characteristics started to decline,indicating a diminishing combustion efficiency.The best combustion state was observed at a dust concentration of 800 g/m3.The instantaneous speed of the MgH2 dust explosion flame propagation exhibited a fluctuating pattern across different concentrations.The fluctuation amplitude initially decreased as the dust concentration increased, suggesting a more stable flame propagation.However,beyond a certain concentration, the fluctuation amplitude began to increase again.It is worth noting that the change in instantaneous propagation speed variation displayed different trends as the concentration varied.The exact behaviors were found to be dependent on the particular concentration level.Finally,analysis of the X-ray diffraction (XRD) test results of the MgH2 explosion products revealed a complex reaction mechanism.The MgH2 dust explosion primarily involved the combustion reaction of MgH2 but also included multiple overall reactions such as the decomposition of MgH2 and Mg(OH)2,as well as the oxidation of Mg and H2.The final product of the explosion reaction was identified to be MgO.
  • loading
  • [1]
    周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展 [J]. 天然气工业, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.

    ZHOU S H, WANG J, LIANG Y. Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.
    [2]
    孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.

    MENG X Y, CHEN M Y, GU A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.
    [3]
    TU H L. Hydrogen energy: a global trend and China’s strategy [J]. Engineering, 2021, 7(6): 703. DOI: 10.1016/j.eng.2021.04.006.
    [4]
    YANG Z H, WANG Z R, CAO X J, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion [J]. International Journal of Hydrogen Energy, 2024, 50: 857–69. DOI: 10.1016/j.ijhydene.2023.07.209.
    [5]
    刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.

    LlU C W, PEl Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologie [J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.
    [6]
    LIU Y F, ZHANG W X, ZHANG X, et al. Nanostructured light metal hydride: fabrication strategies and hydrogen storage performance [J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113560. DOI: 10.1016/j.rser.2023.113560.
    [7]
    CORGNALE C, HARDY B, MOTYKA T, et al. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821–833. DOI: 10.1016/j.rser.2014.07.049.
    [8]
    HUANG Z G, GUO Z P, CALKA A, et al. Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite [J]. Materials Science and Engineering: A, 2007, 447(1/2): 180–185. DOI: 10.1016/j.msea.2006.11.074.
    [9]
    LIU L L, LI J, ZHANG L Y, et al. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant [J]. Journal of Hazardous Materials, 2018, 342: 477–481. DOI: 10.1016/j.jhazmat.2017.08.055.
    [10]
    MARKMAN E, LUZZATTO-SHUKRUN L, LEVY Y S, et al. Effect of additives on hydrogen release reactivity of magnesium hydride composites [J]. International Journal of Hydrogen Energy, 2022, 47(73): 31381–31394. DOI: 10.1016/j.ijhydene.2022.07.025.
    [11]
    SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140. DOI: 10.1016/j.ijhydene.2006.11.022.
    [12]
    赵金钢, 李玉艳, 刘大斌, 等. 氢化镁对金属混合物最小点火能的影响 [J]. 含能材料, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.

    ZHAO J G, LI Y Y, LIU D B, et al. Effect of magnesium hydride on the minimum ignition energy of metal mixture [J]. Chinese Journal of Energetic Materials, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.
    [13]
    TSAI Y T, HUANG G T, ZHAO J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2‐based hydrogen storage materials [J]. AIChE Journal, 2021, 67(8): e17302. DOI: 10.1002/aic.17302.
    [14]
    WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011.
    [15]
    ZHANG Q W, CHENG Y F, ZHANG B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds [J]. Defence Technology, 2024, 31: 471–83. DOI: 10.1016/j.dt.2023.03.003.
    [16]
    郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.

    ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methanedeflagration in ducts [D]. Chongqing: Chongqing University, 2017.
    [17]
    徐在龙. 封闭空间中火焰加速产生压力波及火焰—压力波相互作用的研究 [D]. 天津: 天津大学, 2020.

    XU Z L. Fundamental study of flame acceleration generating pressure wave and flame-pressure wave interaction in confined space [D]. Tianjin: Tianjin University, 2020.
    [18]
    WEI H Q, XU Z L, ZHOU L, et al. Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12657–12668. DOI: 10.1016/j.ijhydene.2017.03.099.
    [19]
    陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析 [J]. 中国安全科学学报, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.

    CHEN G, ZHANG X L, XU S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020 [J]. China Safety Science Journal, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.
    [20]
    王伟, 刘志云, 崔福庆, 等. 1981~2020年我国较大及以上危化品事故统计分析与对策研究 [J]. 应用化工, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.

    WANG W, LIU Z Y, CUI F Q, et al. Statistical analysis and countermeasures of large and above chemical accidents in China during 1981~2020 [J]. Applied Chemical Industry, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.
    [21]
    鲁征, 傅贵, 薛忠智. 天津港“8·12”危险品仓库火灾爆炸事故行为原因研究 [J]. 灾害学, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.

    LU Z, FU G, XUE Z Z. Research on behavioral causes of a fire and explosion accident of 8·12 in Tianjin port [J]. Journal of Catastrophology, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.
    [22]
    黄沿波, 刘铁梅. 化工园区安全管理技术策略 [J]. 灾害学, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.

    HUANG Y B, LIU T M. Strategy on safety management technology of chemical industry park [J]. Journal of Catastrophology, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.
    [23]
    XIONG X Y, GAO K, MU J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids [J]. Fuel, 2022, 326: 125077. DOI: 10.1016/j.fuel.2022.125077.
    [24]
    CASHDOLLAR K L, ZLOCHOWER I A. Explosion temperatures and pressures of metals and other elemental dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 337–348. DOI: 10.1016/j.jlp.2007.04.018.
    [25]
    IMAMURA H, MASANARI K, KUSUHARA M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds, 2005, 386(1/2): 211–216. DOI: 10.1016/j.jallcom.2004.04.145.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (74) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return