Turn off MathJax
Article Contents
WANG Zhiliang, YU Langlang. Analysis on true triaxial mechanical properties of deep marble by using a discrete element-finite difference coupling method[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0394
Citation: WANG Zhiliang, YU Langlang. Analysis on true triaxial mechanical properties of deep marble by using a discrete element-finite difference coupling method[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0394

Analysis on true triaxial mechanical properties of deep marble by using a discrete element-finite difference coupling method

doi: 10.11883/bzycj-2023-0394
  • Received Date: 2023-10-30
  • Rev Recd Date: 2024-03-18
  • Available Online: 2024-03-26
  • To study the dynamic mechanical properties of deep marble, the micro parameters of deep marble were calibrated based on the coupling method of discrete element (particle flow code, PFC) and finite difference (fast Lagrangian analysis of continua, FLAC). Then, the dynamic stress equilibrium condition and uniformity assumption in the impact simulation of three-dimensional split Hopkinson pressure bar (SHPB) test were numerically validated. Finally, an in-depth analysis was conducted on the stress-strain response, fracture characteristics, and energy evolution mechanism of marble under true triaxial stress environment. It has found that the numerical results of the true triaxial SHPB test based on the PFC-FLAC coupling theory satisfy the assumption of stress uniformity, and the simulated stress-strain curves are highly consistent with the measured ones. Peak stress and peak strain decrease with the increase of pre-pressure in the impact direction (axial pressure hereafter) . At the same axial pressure, the peak stress gradually drops down with the increase of incident stress; When the incident stress is fixed, the axial pressure weakens the peak stress of the specimen, while the confining pressure perpendicular to the impact direction (lateral pressure hereafter) increases the compressive strength. During the loading process, the outbreak period of acoustic emission events generally occurs in the post-peak stage, and during this stage, a relatively obvious macroscopic fracture zone is formed within the specimen. Under true triaxial dynamic compression, the failure specimens are mainly characterized by tensile cracks, accounting for over 80% of the total number of cracks. The specimen undergoes energy changes from loading to failure. At the peak stress point, the strain energy storage reaches its limit, which is then transformed into an energy form dominated by dissipated energy and supplemented by particle kinetic energy. The relevant conclusions have important guiding significance for the study of the dynamic characteristics of deep marble and the long-term stability evaluation of deep rock engineering.
  • loading
  • [1]
    MA T H, TANG C A, TANG S B, et al. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177–188. DOI: 10.1016/j.ijrmms.2018.07.016.
    [2]
    SI X F, LI X B, GONG F Q, et al. Experimental investigation on rockburst process and characteristics of a circular opening in layered rock under three-dimensional stress conditions [J]. Tunnelling and Underground Space Technology, 2022, 127: 104603. DOI: 10.1016/j.tust.2022.104603.
    [3]
    ZHENG G Q, TANG Y H, ZHANG Y, et al. Study on failure difference of hard rock based on a comparison between the conventional triaxial test and true triaxial test [J]. Frontiers in Earth Science, 2022, 10: 923611. DOI: 10.3389/feart.2022.923611.
    [4]
    HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
    [5]
    SUN B, CHEN R, PING Y, et al. Dynamic response of rock-like materials based on SHPB pulse waveform characteristics [J]. Materials, 2021, 15(1): 210. DOI: 10.3390/ma15010210.
    [6]
    刘晓辉, 张茹, 刘建锋. 不同应变率下煤岩冲击动力试验研究 [J]. 煤炭学报, 2012, 37(9): 1528–1534. DOI: 10.13225/j.cnki.jccs.2012.09.022.

    LIU X H, ZHANG R, LIU J F. Dynamic test study of coal rock under different strain rates [J]. Journal of China Coal Society, 2012, 37(9): 1528–1534. DOI: 10.13225/j.cnki.jccs.2012.09.022.
    [7]
    刘晓辉, 薛洋, 郑钰, 等. 冲击荷载下煤岩破碎过程能量释放研究 [J]. 岩石力学与工程学报, 2021, 40(S2): 3201–3211. DOI: 10.13722/j.cnki.jrme.2021.0214.

    LIU X H, XUE Y, ZHENG Y, et al. Research on energy release in coal rock fragmentation process under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3201–3211. DOI: 10.13722/j.cnki.jrme.2021.0214.
    [8]
    LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
    [9]
    徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
    [10]
    LUO Y, GONG H L, HUANG J H, et al. Dynamic cumulative damage characteristics of deep-buried granite from Shuangjiangkou hydropower station under true triaxial constraint [J]. International Journal of Impact Engineering, 2022, 165: 104215. DOI: 10.1016/j.ijimpeng.2022.104215.
    [11]
    袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [12]
    XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
    [13]
    CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. DOI: 10.1016/j.ijmecsci.2023.108399.
    [14]
    HAERI H, SARFARAZI V, ZHU Z M, et al. The effect of particle size on the edge notched disk (END) using particle flow code in three dimension [J]. Smart Structures and Systems, 2018, 22(6): 663–673. DOI: 10.12989/sss.2018.22.6.663.
    [15]
    CHANG L F, KONIETZKY H. Application of the Mohr-Coulomb yield criterion for rocks with multiple joint sets using fast Lagrangian analysis of continua 2D (FLAC2D) software [J]. Energies, 2018, 11(3): 614. DOI: 10.3390/en11030614.
    [16]
    JIA M C, YANG Y, LIU B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils [J]. Granular Matter, 2018, 20(4): 76. DOI: 10.1007/s10035-018-0841-y.
    [17]
    丛怡, 丛宇, 张黎明, 等. 大理岩加、卸荷破坏过程的三维颗粒流模拟 [J]. 岩土力学, 2019, 40(3): 1179–1186,1212. DOI: 10.16285/j.rsm.2018.0262.

    CONG Y, CONG Y, ZHANG L M, et al. 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179–1186,1212. DOI: 10.16285/j.rsm.2018.0262.
    [18]
    牛林新, 辛酉阳. 基于正交设计的颗粒流模型宏细观参数相关分析: 以岩石单轴压缩数值试验为例 [J]. 人民长江, 2015, 46(16): 53–57,71. DOI: 10.16232/j.cnki.1001-4179.2015.16.013.

    NIU L X, XIN Y Y. Analysis on relationship between macro-parameters and micro-parameters in PFC2D model based on orthogonal design: case of rock uniaxial compression numerical test [J]. Yangtze River, 2015, 46(16): 53–57,71. DOI: 10.16232/j.cnki.1001-4179.2015.16.013.
    [19]
    丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究 [J]. 岩土工程学报, 2015, 37(6): 1031–1040. DOI: 10.11779/CJGE201506009.

    CONG Y, WANG Z Q, ZHENG Y R, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031–1040. DOI: 10.11779/CJGE201506009.
    [20]
    ZHAO R, TAO M, WU C Q, et al. Study on size and load rate effect of dynamic fragmentation and mechanical properties of marble sphere [J]. Engineering Failure Analysis, 2022, 142: 106814. DOI: 10.1016/j.engfailanal.2022.106814.
    [21]
    LIU K, ZHANG Q B, WU G, et al. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2175–2195. DOI: 10.1007/s00603-018-1691-y.
    [22]
    QI C Z, WANG M Y, WANG Z F, et al. Study on the coupling effect of sample size and strain rate on rock compressive strength [J]. Rock Mechanics and Rock Engineering, 2023, 56(7): 5103–5114. DOI: 10.1007/s00603-023-03309-z.
    [23]
    HU W R, LIU K, POTYONDY D O, et al. 3D continuum-discrete coupled modelling of triaxial Hopkinson bar tests on rock under multiaxial static-dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104448. DOI: 10.1016/j.ijrmms.2020.104448.
    [24]
    许东俊, 耿乃光. 岩石强度随中间主应力变化规律 [J]. 固体力学学报, 1985, 6(1): 72–80. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1985.01.007.

    XU D J, GENG N G. The variation law of rock strength with increase of intermediate principal stress [J]. Acta Mechanica Solida Sinica, 1985, 6(1): 72–80. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1985.01.007.
    [25]
    周喻, 吴顺川, 许学良, 等. 岩石破裂过程中声发射特性的颗粒流分析 [J]. 岩石力学与工程学报, 2013, 32(5): 951–959. DOI: 10.3969/j.issn.1000-6915.2013.05.013.

    ZHOU Y, WU S C, XU X L, et al. Particle flow analysis of acoustic emission characteristics during rock failure process [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 951–959. DOI: 10.3969/j.issn.1000-6915.2013.05.013.
    [26]
    SONG B, CHEN W. Energy for specimen deformation in a split Hopkinson pressure bar experiment [J]. Experimental Mechanics, 2006, 46(3): 407–410. DOI: 10.1007/s11340-006-6420-x.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (55) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return