Turn off MathJax
Article Contents
XIA Wei, LU Song, BAI Erlei, ZHAO Dehui, XU Jinyu, DU Yuhang. A study of dynamic compression behavior of carbon nanotubes reinforced concrete based on SHPB test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0424
Citation: XIA Wei, LU Song, BAI Erlei, ZHAO Dehui, XU Jinyu, DU Yuhang. A study of dynamic compression behavior of carbon nanotubes reinforced concrete based on SHPB test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0424

A study of dynamic compression behavior of carbon nanotubes reinforced concrete based on SHPB test

doi: 10.11883/bzycj-2023-0424
  • Received Date: 2023-11-27
  • Rev Recd Date: 2024-01-25
  • Available Online: 2024-02-29
  • In order to investigate the dynamic compression behavior of carbon nanotubes reinforced concrete under impact loading, the impact compression tests were carried out by using a split Hopkinson pressure bar (SHPB) test device with a diameter of 100 mm. The impact velocities in the SHPB tests were about 6.8, 7.8, 8.8, 9.8 and 10.8 m/s, respectively. The contents of carbon nanotubes in concrete (as a percentage of cement mass) were 0% (i.e. ordinary concrete, as a baseline of comparison), 0.10%, 0.20%, 0.30% and 0.40%, respectively. Then, based on the test results, the evolution laws of dynamic compressive strength, compression deformation, and energy dissipation characteristics of concrete under different impact velocities and carbon nanotubes contents were compared and analyzed. The experimental results show that the dynamic strength characteristics of carbon nanotubes reinforced concrete have significant loading rate sensitivity. The dynamic compressive strength and dynamic enhancement factor show linear positive correlations with impact velocity. When the loading level remains the same, the dynamic compressive strength increases first and then decreases slightly with the increase of carbon nanotubes content, and the growth rate can reach 23.7% compared to ordinary concrete. The variation characteristics of ultimate strain and impact toughness of carbon nanotubes reinforced concrete are similar, which gradually increase with the increase of impact velocity, and have a certain impact velocity strengthening effect, but there is no obvious linear relationship with the impact velocity. Toughness is a comprehensive reflection of material strength and deformation. Therefore, at the same loading level, when the content of carbon nanotubes was 0.30%, the impact toughness of concrete achieved a relative maximum, being about 10% higher than that of ordinary concrete. The appropriate addition of carbon nanotubes can effectively enhance the integrity and compactness of the internal structure of concrete, thereby improving its dynamic mechanical properties and energy dissipation performance.
  • loading
  • [1]
    KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites [J]. Cement and Concrete Composites, 2010, 32(2): 110–115. DOI: 10.1016/j.cemconcomp.2009.10.007.
    [2]
    党发宁, 李玉涛, 任劼, 等. 混凝土冲击破坏动态力学及能量特性分析 [J]. 爆炸与冲击, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.

    DANG F N, LI Y T, REN J, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.
    [3]
    LU S, XIA W, BAI E L, et al. Interfacial modification: The dynamic compression properties and enhancement mechanism of concrete added with micro-nano hierarchical carbon-based fiber [J]. Composites Part B:Engineering, 2022, 247: 110340. DOI: 10.1016/j.compositesb.2022.110340.
    [4]
    WANG J L, DONG S F, PANG S D, et al. Tailoring anti-impact properties of ultra-high performance concrete by incorporating functionalized carbon nanotubes [J]. Engineering, 2022, 18: 232–245. DOI: 10.1016/j.eng.2021.04.030.
    [5]
    胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系 [J]. 爆炸与冲击, 2002, 22(3): 242–246.

    HU S S, WANG D R. Dynamic constitutive relation of concrete under impact [J]. Explosion and Shock Waves, 2002, 22(3): 242–246.
    [6]
    徐阳晨, 邢国华, 黄娇, 等. 聚乙烯醇纤维和碳纳米管改性对混凝土力学性能的影响 [J]. 建筑材料学报, 2023, 26(7): 809–815,822. DOI: 10.3969/j.issn.1007-9629.2023.07.014.

    XU Y C, XING G H, HUANG J, et al. Effect of PVA fiber and carbon nanotubes modification on mechanical properties of concrete [J]. Journal of Building Materials, 2023, 26(7): 809–815,822. DOI: 10.3969/j.issn.1007-9629.2023.07.014.
    [7]
    康玉梅, 佟佳欣. 多壁碳纳米管对钢渣混凝土力学及耐久性能的影响 [J]. 中南大学学报(自然科学版), 2023, 54(8): 3070–3078. DOI: 10.11817/j.issn.1672-7207.2023.08.011.

    KANG Y M, TONG J X. Effect of multi-walled carbon nanotubes on mechanical and durability of steel slag concrete [J]. Journal of Central South University (Science and Technology), 2023, 54(8): 3070–3078. DOI: 10.11817/j.issn.1672-7207.2023.08.011.
    [8]
    CARRIÇO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete [J]. Construction and Building Materials, 2018, 164: 121–133. DOI: 10.1016/j.conbuildmat.2017.12.221.
    [9]
    XU S L, LIU J T, LI Q H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste [J]. Construction and Building Materials, 2015, 76: 16–23. DOI: 10.1016/j.conbuildmat.2014.11.049.
    [10]
    NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials [J]. Applied Surface Science, 2011, 257(6): 1941–1945. DOI: 10.1016/j.apsusc.2010.09.030.
    [11]
    COLLINS F, LAMBERT J, DUAN W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures [J]. Cement and Concrete Composites, 2012, 34(2): 201–207. DOI: 10.1016/j.cemconcomp.2011.09.013.
    [12]
    ROCHA V V, LUDVIG P, TRINDADE A C C, et al. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites [J]. Construction and Building Materials, 2019, 209: 1–8. DOI: 10.1016/j.conbuildmat.2019.03.003.
    [13]
    PARVEEN S, RANA S, FANGUEIRO R, et al. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique [J]. Cement and Concrete Research, 2015, 73: 215–227. DOI: 10.1016/j.cemconres.2015.03.006.
    [14]
    LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes [J]. Carbon, 2005, 43(6): 1239–1245. DOI: 10.1016/j.carbon.2004.12.017.
    [15]
    GAO F F, TIAN W, WANG Z, et al. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials [J]. Construction and Building Materials, 2020, 260: 120452. DOI: 10.1016/j.conbuildmat.2020.120452.
    [16]
    郑冰淼, 陈嘉琪, 施韬, 等. 多壁碳纳米管增强混凝土的断裂性能 [J]. 硅酸盐学报, 2021, 49(11): 2502–2508. DOI: 10.14062/j.issn.0454-5648.20210054.

    ZHENG B M, CHEN J Q, SHI T, et al. Fracture properties of multi-walled carbon nanotubes reinforced concrete [J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2502–2508. DOI: 10.14062/j.issn.0454-5648.20210054.
    [17]
    黄山秀, 陈小羊, 张传祥, 等. 不同应变率和碳纳米管掺量下混凝土的力学性质与能量演化特征 [J]. 高压物理学报, 2023, 37(1): 014101. DOI: 10.11858/gywlxb.20220654.

    HUANG S X, CHEN X Y, ZHANG C X, et al. Mechanical properties and energy evolution characteristics of concrete under different strain rates and content of MWCNTs [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. DOI: 10.11858/gywlxb.20220654.
    [18]
    任韦波, 许金余, 白二雷, 等. 高温后玄武岩纤维增强混凝土的动态力学特性 [J]. 爆炸与冲击, 2015, 35(1): 36–42. DOI: 10.11883/1001-1455(2015)01-0036-07.

    REN W B, XU J Y, BAI E L, et al. Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures [J]. Explosion and Shock Waves, 2015, 35(1): 36–42. DOI: 10.11883/1001-1455(2015)01-0036-07.
    [19]
    夏伟, 陆松, 许金余, 等. 碳纳米管/碳纤维对混凝土静力特性的影响及微观机理分析 [J]. 化工新型材料, 2022, 50(9): 278–281. DOI: 10.19817/j.cnki.issn1006-3536.2022.09.055.

    XIA W, LU S, XU J Y, et al. Influence of CNTs/CF on the static characteristics of concrete and analysis of its micro-mechanism [J]. New Chemical Materials, 2022, 50(9): 278–281. DOI: 10.19817/j.cnki.issn1006-3536.2022.09.055.
    [20]
    XIA W, LU S, BAI E L, et al. Strengthening and toughening behaviors and dynamic constitutive model of carbon-based hierarchical fiber modified concrete: Cross-scale synergistic effects of carbon nanotubes and carbon fiber [J]. Journal of Building Engineering, 2023, 63: 105482. DOI: 10.1016/j.jobe.2022.105482.
    [21]
    KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264–1283. DOI: 10.1016/j.conbuildmat.2018.09.187.
    [22]
    吕太洪. 基于SHPB的混凝土及钢筋混凝土冲击压缩力学行为研究 [D]. 合肥: 中国科学技术大学, 2018.

    LV T H. Studies on the shock compression behaviors of concrete and steel reinforced concrete based on the split Hopkinson pressure bar[D]. Hefei: University of Science and Technology of China, 2018.
    [23]
    方士正, 李炜煜, 杨阳, 等. 静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究 [J]. 振动与冲击, 2023, 42(6): 280–288. DOI: 10.13465/j.cnki.jvs.2023.06.034.

    FANG S Z, LI W Y, YANG Y, et al. Experimental study on the dynamic mechanical behavior and energy dissipation characteristics of deep rock under coupled impact loading and hydrostatic pre-stress [J]. Journal of Vibration and Shock, 2023, 42(6): 280–288. DOI: 10.13465/j.cnki.jvs.2023.06.034.
    [24]
    王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响 [J]. 实验力学, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.

    WANG D R, HU S S. Influence of aggregate on the compression properties of concrete under impact [J]. Journal of Experimental Mechanics, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.
    [25]
    胡金生, 杨秀敏, 周早生, 等. 钢纤维混凝土与聚丙烯纤维混凝土材料冲击荷载下纤维增韧特性试验研究 [J]. 建筑结构学报, 2005, 26(2): 101–105. DOI: 10.14006/j.jzjgxb.2005.02.015.

    HU J S, YANG X M, ZHOU Z S, et al. Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load [J]. Journal of Building Structures, 2005, 26(2): 101–105. DOI: 10.14006/j.jzjgxb.2005.02.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (159) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return