Turn off MathJax
Article Contents
ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0449
Citation: ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0449

Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact

doi: 10.11883/bzycj-2023-0449
  • Received Date: 2023-12-18
  • Rev Recd Date: 2024-02-29
  • Available Online: 2024-03-20
  • Studying the strength, deformation and damage mechanism of freeze-thaw treated rock mass under the action of cyclic dynamic disturbance was of important significance for reducing engineering disasters and improving rock breaking efficiency in cold regions. The cyclic impact tests of freeze-thaw treated red sandstone under two kinds of impact pressure were carried out to investigate the effects of cyclic impact number and freeze-thaw number on stress wave propagation, dynamic stress-strain curve, peak stress, and peak strain. In addition, the calculation method of cumulative damage factor, which can comprehensive consider the effects of cyclic impact and freeze-thaw, is proposed based on the Lemaitre strain equivalence principle. Finally, the microstructure characteristics of red sandstone after freeze-thaw and cyclic impact are analyzed in detail. Results show that red sandstone specimens treated with different freeze-thaw number show tensile failure mode under cyclic impact load. The cyclic impact number that red sandstone specimen can withstand is negatively correlated with freeze-thaw cycle number, and red sandstone specimen after 75 freeze-thaw cycles treatments reaches the failure state after the first impact loading. Moreover, the cyclic impact number mainly affects the jump point, abscissa corresponding to peak point and amplitude of transmitted waves, and the amplitude of reflected waves. While the freeze-thaw number shows a great effect on the jump point, abscissa corresponding to peak point, and amplitude of transmitted waves during the first impact process. The cumulative damage factor of red sandstone specimen exhibits a good negative correlation with the dynamic peak stress. After the combination effects of freeze-thaw and cyclic impact, the cracks inside red sandstone spread along the grain boundary and connect with the pores to form a complex network.
  • loading
  • [1]
    马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [2]
    倪苏黔, 徐颖, 葛进进, 等. 干-酸侵蚀下深地白砂岩动静态损伤特性研究 [J]. 岩石力学与工程学报, 2023, 42(10): 2528–2539. DOI: 10.13722/j.cnki.jrme.2022.1218.

    NI S Q, XU Y, GE J J, et al. Dynamic and static damage characteristics of deep-earth white sandstone under dry-acid erosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(10): 2528–2539. DOI: 10.13722/j.cnki.jrme.2022.1218.
    [3]
    王俊奇, 汪志刚. 确定裂隙岩体渗透系数张量的一维环单元模型研究 [J]. 水利学报, 2023, 54(5): 575–586. DOI: 10.13243/j.cnki.slxb.20220458.

    WANG J Q, WANG Z G. Study on one-dimensional ring unit model for determining the permeability coefficient tensor of fractured rock masses [J]. Journal of Hydraulic Engineering, 2023, 54(5): 575–586. DOI: 10.13243/j.cnki.slxb.20220458.
    [4]
    SONG Z Y, WANG Y, KONIETZKY H, et al. Mechanical behavior of marble exposed to freeze-thaw-fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104648. DOI: 10.1016/j.ijrmms.2021.104648.
    [5]
    高要辉, 张春生, 苏方声, 等. 深部硬岩剪切边界下应力诱发片帮的机制研究 [J]. 岩土力学, 2022, 43(4): 1103–1111, 1122. DOI: 10.16285/j.rsm.2021.1220.

    GAO Y H, ZHANG C S, SU F S, et al. Mechanism of stress-induced spalling of deep hard rocks under shear boundary condition [J]. Rock and Soil Mechanics, 2022, 43(4): 1103–1111, 1122. DOI: 10.16285/j.rsm.2021.1220.
    [6]
    金解放, 张睿, 王熙博, 等. 岩石梯度应力加载试验装置研制及初步试验研究 [J]. 岩石力学与工程学报, 2020, 39(8): 1547–1559. DOI: 10.13722/j.cnki.jrme.2019.1206.

    JIN J F, ZHANG R, WANG X B, et al. Development of a rock gradient stress loading test device and its primary application [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1547–1559. DOI: 10.13722/j.cnki.jrme.2019.1206.
    [7]
    姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [8]
    宋凯文, 黄俊红, 罗忆, 等. 循环冲击荷载下的礁灰岩力学特性研究 [J]. 岩石力学与工程学报, 2023, 42(S2): 3956–3965. DOI: 10.13722/j.cnki.jrme.2022.0935.

    SONG K W, DAI J H, LUO Y, et al. Mechanical properties of reef limestone under cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 3956–3965. DOI: 10.13722/j.cnki.jrme.2022.0935.
    [9]
    罗宁, 索云琛, 张浩浩, 等. 循环冲击层理煤岩动力学行为及破坏规律研究 [J]. 爆炸与冲击, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.

    LUO N, SUO Y C, ZHANG H H, et al. On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact [J]. Explosion and Shock Waves, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.
    [10]
    LI R, ZHU J B, QU H L, et al. An experimental investigation on fatigue characteristics of granite under repeated dynamic tensions [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 158: 105185. DOI: 10.1016/j.ijrmms.2022.105185.
    [11]
    ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [12]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [13]
    王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [14]
    WANG X Y, LIU Z Y, GAO X C, et al. Dynamic characteristics and fracture process of marble under repeated impact loading [J]. Engineering Fracture Mechanics, 2022, 276: 108926. DOI: 10.1016/j.engfracmech.2022.108926.
    [15]
    李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性 [J]. 实验力学, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.

    LI D Y, SUN X L, ZHOU Z L, et al. On the dynamic accumulated damage characteristics of granite subjected to repeated impact load action [J]. Journal of Experimental Mechanics, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.
    [16]
    MENG X Z, ZHANG H M, YUAN C, et al. Damage constitutive prediction model for rock under freeze-thaw cycles based on mesoscopic damage definition [J]. Engineering Fracture Mechanics, 2023, 293: 109685. DOI: 10.1016/j.engfracmech.2023.109685.
    [17]
    NIU C Y, ZHU Z M, ZHOU L, et al. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles [J]. Cold Regions Science and Technology, 2021, 191: 103328. DOI: 10.1016/j.coldregions.2021.103328.
    [18]
    肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究 [J]. 岩土工程学报, 2023, 45(4): 805–815. DOI: 10.11779/CJGE20220219.

    XIAO P, CHEN Y L, DU X, et al. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805–815. DOI: 10.11779/CJGE20220219.
    [19]
    于洋, 徐倩, 刁心宏, 等. 循环冲击对围压作用下砂岩特征的影响 [J]. 华中科技大学学报(自然科学版), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623.

    YU Y, XU Q, DIAO X H, et al. Effect of cyclic impact on sandstone characteristics under confining pressures [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623.
    [20]
    唐礼忠, 程露萍, 王春, 等. 高静载条件下受频繁动力扰动时蛇纹岩动力学特性研究 [J]. 岩土力学, 2016, 37(10): 2737–2745. DOI: 10.16285/j.rsm.2016.10.001.

    TANG L Z, CHENG L P, WANG C, et al. Dynamic characteristics of serpentinite under condition of high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2016, 37(10): 2737–2745. DOI: 10.16285/j.rsm.2016.10.001.
    [21]
    闻磊, 梁旭黎, 冯文杰, 等. 冲击损伤砂岩动静组合加载力学特性研究 [J]. 岩土力学, 2020, 41(11): 3540–3552. DOI: 10.16285/j.rsm.2020.0214.

    WEN L, LIANG X L, FENG W J, et al. An investigation of the mechanical properties of sandstone under coupled static and dynamic loading [J]. Rock and Soil Mechanics, 2020, 41(11): 3540–3552. DOI: 10.16285/j.rsm.2020.0214.
    [22]
    吕晓聪, 许金余, 赵德辉, 等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究 [J]. 工程力学, 2011, 28(1): 138–144.

    LV X C, XU J Y, ZHAO D H, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138–144.
    [23]
    田诺成, 王志亮, 熊峰, 等. 循环冲击荷载下轴压对花岗岩动力学特性的影响 [J]. 哈尔滨工业大学学报, 2021, 53(5): 156–164. DOI: 10.11918/201908134.

    TIAN N C, WANG Z L, XIONG F, et al. Influence of axial pressure on dynamic mechanical properties of granite under cyclic impact loading [J]. Journal of Harbin Institute of Technology, 2021, 53(5): 156–164. DOI: 10.11918/201908134.
    [24]
    金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究 [J]. 岩土力学, 2011, 32(5): 1385–1393, 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.

    JIN J F, LI X B, YIN Z Q, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393, 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.
    [25]
    SHU R H, YIN T B, LI X B, et al. Effect of thermal treatment on energy dissipation of granite under cyclic impact loading [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 385–396. DOI: 10.1016/S1003-6326(19)64948-4.
    [26]
    WANG Z L, TIAN N C, WANG J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact [J]. Journal of Materials in Civil Engineering, 2018, 30(11): 04018274. DOI: 10.1061/(ASCE)MT.1943-5533.0002465.
    [27]
    WANG Z L, TIAN N C, WANG J G, et al. Mechanical response and energy dissipation analysis of heat-treated granite under repeated impact loading [J]. Computers, Materials & Continua, 2019, 59(1): 275–296. DOI: 10.32604/cmc.2019.04247.
    [28]
    WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [29]
    贾蓬, 毛松泽, 卢佳亮, 等. 冻融循环对绿砂岩动态抗压性能影响的试验研究 [J]. 北京理工大学学报, 2023, 43(8): 841–851. DOI: 10.15918/j.tbit1001-0645.2022.194.

    JIA P, MAO S Z, LU J L, et al. Experimental study on the effect of freeze-thaw cycles on the dynamic characteristics of green sandstone [J]. Transactions of Beijing Institute of Technology, 2023, 43(8): 841–851. DOI: 10.15918/j.tbit1001-0645.2022.194.
    [30]
    孟凡东, 翟越, 李宇白, 等. 冻融循环作用后砂岩的动态抗拉性能及能量演化试验研究 [J]. 岩石力学与工程学报, 2021, 40(12): 2445–2453. DOI: 10.13722/j.cnki.jrme.2021.0289.

    MENG F D, ZHAI Y, LI Y B, et al. Experimental study on dynamic tensile properties and energy evolution of sandstone after freeze-thaw cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2445–2453. DOI: 10.13722/j.cnki.jrme.2021.0289.
    [31]
    张蓉蓉, 经来旺, 马冬冬. 冻融和热冲击循环作用后红砂岩SHPB试验和本构模型研究 [J]. 振动与冲击, 2022, 41(9): 267–275. DOI: 10.13465/j.cnki.jvs.2022.09.034.

    ZHANG R R, JING L W, MA D D. SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles [J]. Journal of Vibration and Shock, 2022, 41(9): 267–275. DOI: 10.13465/j.cnki.jvs.2022.09.034.
    [32]
    MA Q Y, MA D D, YAO Z M. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen [J]. Cold Regions Science and Technology, 2018, 153: 10–17. DOI: 10.1016/j.coldregions.2018.04.014.
    [33]
    WANG P, XU J Y, LIU S, et al. A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect [J]. Cold Regions Science and Technology, 2016, 131: 16–23. DOI: 10.1016/j.coldregions.2016.08.003.
    [34]
    WANG P, XU J Y, FANG X Y, et al. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles [J]. Engineering Geology, 2017, 221: 104–113. DOI: 10.1016/j.enggeo.2017.02.025.
    [35]
    ZHAI Y, MENG F D, LI Y B, et al. Research on dynamic compression failure characteristics and damage constitutive model of sandstone after freeze-thaw cycles [J]. Engineering Failure Analysis, 2022, 140: 106577. DOI: 10.1016/j.engfailanal.2022.106577.
    [36]
    HATHEWAY A W. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974—2006 [J]. Environmental and Engineering Geoscience, 2009, 15(1): 47–48. DOI: 10.2113/gseegeosci.15.1.47.
    [37]
    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. Beijing: China Planning Press, 2013.
    [38]
    申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨 [J]. 岩土工程学报, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.

    SHEN Y J, YANG G S, RONG T L, et al. Proposed scheme for freeze-thaw cycle tests on rock [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.
    [39]
    ZHANG R R, YANG Y, MA D D, et al. Experimental study on effect of freeze-thaw cycles on dynamic mode-Ⅰ fracture properties and microscopic damage evolution of sandstone [J]. Engineering Fracture Mechanics, 2023, 279: 109043. DOI: 10.1016/j.engfracmech.2023.109043.
    [40]
    王宇, 翟成, 唐伟, 等. 循环冲击载荷作用下页岩动力学响应及能量耗散特征 [J]. 爆炸与冲击, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.

    WANG Y, ZHAI C, TANG W, et al. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings [J]. Explosion and Shock Waves, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.
    [41]
    刘伟, 曾鹏, 闫雷, 等. 循环冲击下弱风化岩石力学特性与渗透率演化 [J]. 煤炭学报, 2021, 46(6): 1855–1863. DOI: 10.13225/j.cnki.jccs.2020.0066.

    LIU W, ZENG P, YAN L, et al. Mechanical properties and permeability evolution of weakly weathered rocks under cyclic impact [J]. Journal of China Coal Society, 2021, 46(6): 1855–1863. DOI: 10.13225/j.cnki.jccs.2020.0066.
    [42]
    金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [43]
    MA D D, XIANG H S, MA Q Y, et al. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load [J]. Journal of Engineering Mechanics, 2021, 147(6): 104021033. DOI: 10.1061/(ASCE)EM.1943-7889.0001933.
    [44]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤和岩石物理力学性质测定方法 第8部分: 煤和岩石变形参数测定方法: GB/T 23561.8—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Methods for determining the physical and mechanical properties of coal and rock - Part 8: Methods for determining the deformation parameters of coal and rock: GB/T 23561.8—2009 [S]. Beijing: Standards Press of China, 2009.
    [45]
    ASTM. Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures: ASTM D7012-14e1 [S]. Pennsylvania, USA: ASTM International, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (68) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return