Turn off MathJax
Article Contents
ZHANG Beibei, CHENG Yangfan, JIANG Bayun, SHEN Zhaowu, GAN Xiaohong. Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0465
Citation: ZHANG Beibei, CHENG Yangfan, JIANG Bayun, SHEN Zhaowu, GAN Xiaohong. Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0465

Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE

doi: 10.11883/bzycj-2023-0465
  • Received Date: 2023-12-26
  • Rev Recd Date: 2024-02-28
  • Available Online: 2024-03-11
  • To investigate the influence of typical metal powders on the shock wave effect and thermal damage performance of fuel air explosive (FAE), the explosion characteristics, flame structure and temperature distribution characteristics of epoxypropane (PO) with different types and contents of metal powders were experimentally studied using a 20 L spherical liquid explosion test system. The temperature field of explosion flame was reconstructed by the colorimetric temperature measurement method with a high-speed camera, which is based on the gray-body radiation theory and a self-written python code. The tungsten lamp was used to calibrate the measuring accuracy of the temperature mapping system, and the fitting relationship between the temperatures and the gray values of the high-speed images is derived to obtain the conversion coefficient. The experimental results show that the optimal mass concentration of pure PO was 780 g/m3, both the explosion overpressure (∆pmax) and the explosion pressure rise rate ((dp/dt)max) reached the maximum, ∆pmax=0.799 MPa and (dp/dt)max=52.438 MPa/s, respectively. The maximum explosion overpressure, maximum explosion pressure rise rate and maximum average temperature of PO added with Al, Ti and Mg powders all increase with the increase of mass ratios (I), while the trend of maximum pressure rise time is opposite. The variation rules of the maximum explosion overpressure and maximum average temperature are consistent, the order of their values is: Al/PO, Mg/PO, Ti/PO. When I=40%, the maximum explosion overpressure value of the three solid-liquid mixed fuels increases by 12.00%, 8.41% and 11.54%, respectively, compared with pure PO. In addition, the variation rules of the maximum explosion pressure rise rate and the combustion rate are consistent, the order of their values is: Al/PO, Mg/PO, Ti/PO. When I=40%, the maximum explosion pressure rise rate value of the three solid-liquid mixed fuels increases by 41.91%, 39.60% and 45.29%, respectively, compared with the pure PO. The results indicate that different high-energy metal powders have varied advantages in improving the explosion performance of PO, so metal powders should be appropriately selected as energetic additives according to the damage performance index in the formulation design of FAE.
  • loading
  • [1]
    昝文涛, 洪滔, 董贺飞. 铝粉尘云团爆轰温压效应的数值模拟 [J]. 兵工学报, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.

    ZAN W T, HONG T, DONG H F. Numerical simulation of detonation temperature and pressure effects of aluminum powder cloud [J]. Acta Armamentarii, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.
    [2]
    刘文杰, 白春华, 刘庆明, 等. 高挥发性液体传质速率机理和实验研究 [J]. 兵工学报, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.

    LIU W J, BAI C H, LIU Q M, et al. Mechanism and experimental study of high volatile liquid mass transfer rate [J]. Acta Armamentarii, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.
    [3]
    程扬帆, 王中华, 胡芳芳, 等. TiH2粉尘火焰传播速度及温度分布的高速二维测量 [J]. 兵工学报, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.

    CHENG Y F, WANG Z H, HU F F, et al. High-speed two-dimensional measurements of flame propagation velocity and temperature distribution of TiH2 dust flame [J]. Acta Armamentarii, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.
    [4]
    LIU G, HOU F, CAO B, et al. Experimental study of fuel-air explosive [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 213–217. DOI: 10.1007/s10573-008-0028-7.
    [5]
    ZHANG C, BAI C H, REN J F, et al. The promotion of nitromethane on solid-liquid fuel/air mixtures explosion characteristics under different ambient conditions [J]. Fuel, 2022, 322: 124190. DOI: 10.1016/j.fuel.2022.124190.
    [6]
    WAN H W, WEN Y Q, ZHANG Q. Explosion behaviors of vapor–liquid propylene oxide/air mixture under high-temperature source ignition [J]. Fuel, 2023, 331: 125815. DOI: 10.1016/j.fuel.2022.125815.
    [7]
    BAI C H, LIU W J, YAO J, et al. Explosion characteristics of liquid fuels at low initial ambient pressures and temperatures [J]. Fuel, 2020, 265: 116951. DOI: 10.1016/j.fuel.2019.116951.
    [8]
    ZHANG Q, LI W, TAN R M, et al. Combustion parameters of gaseous epoxypropane/air in a confined vessel [J]. Fuel, 2013, 105: 512–517. DOI: 10.1016/j.fuel.2012.10.017.
    [9]
    谭汝媚, 张奇. 环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究 [J]. 高压物理学报, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.

    TAN R M, ZHANG Q. Research on the explosibility of gaseous epoxypropane-aluminum dust-air hybrid mixtures [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.
    [10]
    徐敏潇, 刘大斌, 徐森. 硼含量对燃料空气炸药爆炸性能影响的试验研究 [J]. 兵工学报, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.

    XU M X, LIU D B, XU S. Experimental study of influence of boron content on explosion performance of fuel-air explosive [J]. Acta Armamentarii, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.
    [11]
    WANG Y X, LIU Y, XU Q M, et al. Effect of metal powders on explosion of fuel-air explosives with delayed secondary igniters [J]. Defence Technology, 2021, 17(3): 785–791. DOI: 10.1016/j.dt.2020.05.010.
    [12]
    CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224.
    [13]
    范彩玲. 温压弹爆炸热毁伤效应研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.

    FAN C L. Research on thermal damage effect of thermobaric bomb explosive [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.
    [14]
    LIU X L, WANG Y, ZHANG Q. A study of the explosion parameters of vapor–liquid two-phase JP-10/air mixtures [J]. Fuel, 2016, 165: 279–288. DOI: 10.1016/j.fuel.2015.10.081.
    [15]
    张启威, 程扬帆, 夏煜, 等. 比色测温技术在瞬态爆炸温度场测量中的应用研究 [J]. 爆炸与冲击, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.

    ZHANG Q W, CHENG Y F, XIA Y, et al. Application of colorimetric pyrometer in the measurement of transient explosion temperature [J]. Explosion and Shock Waves, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.
    [16]
    戴景民. 辐射测温的发展现状与展望 [J]. 自动化技术与应用, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.

    DAI J M. Survey of radiation thermometry [J]. Techniques of Automations & Applications, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.
    [17]
    WANG H, CHENG Y F, ZHU S J, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives [J]. Defence Technology, 2023. DOI: 10.1016/j.dt.2023.05.002.
    [18]
    夏煜, 程扬帆, 李世周, 等. 无约束条件下甲烷/空气预混气体燃爆特性研究 [J]. 实验力学, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.

    XIA Y, CHENG Y F, LI S Z, et al. Combustion and explosion characteristics of methane/air premixed gas under unconstrained condition [J]. Journal of Experimental Mechanics, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.
    [19]
    LI S Z, CHENG Y F, WANG R, et al. Suppression effects and mechanisms of three typical solid suppressants on titanium hydride dust explosions [J]. Process Safety and Environmental Protection, 2023, 177: 688–698. DOI: 10.1016/j.psep.2023.07.039.
    [20]
    蒋八运, 程扬帆, 李世周, 等. 环氧丙烷/空气混合物气-液两相燃爆特性 [J]. 含能材料, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.

    JIANG B Y, CHENG Y F, LI S Z, et al. Vapor-liquid two-phase combustion and explosion characteristics of propylene oxide/air mixtures [J]. Chinese Journal of Energetic Materials, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.
    [21]
    WANG Z H, CHENG Y F, MOGI T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876. DOI: 10.1016/j.jlp.2022.104876.
    [22]
    ZHANG C, BAI C H, YAO J. Liquid component effect on the dispersion and explosion characteristics of solid-liquid mixed fuel [J]. Fuel, 2022, 319: 123806. DOI: 10.1016/j.fuel.2022.123806.
    [23]
    DE IZARRA C, GITTON J M. Calibration and temperature profile of a tungsten filament lamp [J]. European Journal of Physics, 2010, 31(4): 933–942. DOI: 10.1088/0143-0807/31/4/022.
    [24]
    李文霞, 林柏泉, 魏吴晋, 等. 纳米级别铝粉粉尘爆炸的实验研究 [J]. 中国矿业大学学报, 2010, 39(4): 475–479.

    LI W X, LIN B Q, WEI W J, et al. Experimental study on the explosive characteristics of nano-aluminum powder [J]. Journal of China University of Mining & Technology, 2010, 39(4): 475–479.
    [25]
    LIU W J, BAI C H, LIU Q M, et al. Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics [J]. Combustion and Flame, 2020, 221: 41–49. DOI: 10.1016/j.combustflame.2020.07.025.
    [26]
    林柏泉, 梅晓凝, 王可, 等. 基于20L球形爆炸装置的微米级铝粉爆炸特性实验 [J]. 北京理工大学学报, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.

    LIN B Q, MEI X N, WANG K, et al. Explosion characteristics of micro-aluminum powders in 20 L spherical vessels [J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.
    [27]
    王学锐. 铝热反应热效应机制与工程应用 [D]. 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.

    WANG X R. Thermal effect mechanism and engineering application of aluminum thermal reaction [D]. Huainan: Anhui University of Science and Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.
    [28]
    郝海霞, 姚二岗, 王宝兴, 等. 含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性 [J]. 含能材料, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.

    HAO H X, YAO E G, WANG B X, et al. Laser ignition characteristics of AP /HTPB composite solid propellants containing metal nanopowders [J]. Chinese Journal of Energetic Materials, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.
    [29]
    方伟, 赵省向, 张奇, 等. 含微/纳米铝粉燃料空气炸药爆炸特性 [J]. 含能材料, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.

    FANG W, ZHAO S X, ZHANG Q, et al. Explosion characteristic of fuel-air explosion containing Micro/Nano-aluminum powder [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (82) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return