XIE Chun-ming, YANG Jun, XUE Li. Numericalsimulationoftoweringtubbystructureblastingdemolition[J]. Explosion And Shock Waves, 2012, 32(1): 73-78. doi: 10.11883/1001-1455(2012)01-0073-06
Citation: YANG Hui, WANG Kehui, ZHOU Gang, LI Ming, WU Haijun, DAI Xianghui, DUAN Jian. Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees[J]. Explosion And Shock Waves, 2024, 44(10): 101403. doi: 10.11883/bzycj-2024-0017

Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees

doi: 10.11883/bzycj-2024-0017
  • Received Date: 2024-01-08
  • Rev Recd Date: 2024-06-25
  • Available Online: 2024-06-27
  • Publish Date: 2024-10-30
  • The weathering effect can lead to the development of pores in rock material, which affects its engineering properties seriously. Therefore, studying the influence of the weathering effect on the mechanical properties and anti-penetration properties of granite is of great significance to evaluate the damage effectiveness of penetration warheads and analyze the protection capability of underground facilities. The two kinds of granite with different weathering degrees were selected to systematically investigate their physical properties, static/dynamic compressive properties, and anti-penetration properties with the experiment methods, such as the X-ray diffraction (XRD) test, the static uniaxial compression test, the static triaxial compression test, the dynamic uniaxial compression test, the dynamic triaxial compression test, and the two-stage light gas gun test. Finally, the results indicate that the weathering effect can cause a decrease in biotite and microcline, an increase in porosity, loose internal structure, and obvious defects in granite, based on the X-ray diffraction analysis technique. Besides, the weathering effect can also lead to deterioration in granite’s compressive strength, weakened strain rate effect, and the shift of the failure mode from brittle failure to weak shear failure. Under static and dynamic triaxial compression, as for the two kinds of weathered granite, static and dynamic compressive strength rises significantly with the increase of confining pressure, while moderately weathered granite is more sensitive to confining pressure, compared with the slightly weathered granite. Under the condition of high-speed penetration, the speed varying from 873 m/s to 1040 m/s, there is little difference in anti-penetration performance for the two kinds of weathered granite, in which case both of the non-dimensional penetration depths are generally no more than three times the length of the projectiles. Moreover, no obvious penetration trajectory zones exit in weathered granite targets while there are significant crushed zones around the projectiles, the length of which can reach up to 5−8 times the diameter of the projectiles.
  • [1]
    徐干成, 顾金才, 张向阳, 等. 地下洞库围岩外加固抗炸弹侵彻性能研究 [J]. 岩石力学与工程学报, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.

    XU G C, GU J C, ZHANG X Y, et al. Penetration resistivity research on anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.
    [2]
    高杰, 何翔, 李磊, 等. 金属-岩石复合材料抗侵彻性能研究 [J]. 防护工程, 2016, 38(5): 11–16.

    GAO J, HE X, LI L, et al. Study on anti-penetration performance of metal-rock composite [J]. Protective Engineering, 2016, 38(5): 11–16.
    [3]
    邓国强, 孙宇新, 胡金生. 高速侵彻硬目标时弹体极限试验研究 [J]. 防护工程, 2016, 38(6): 14–17.

    DENG G Q, SUN Y X, HU J S. Experimental study on the ultimate performance of projectile under high velocity penetration to hard target [J]. Protective Engineering, 2016, 38(6): 14–17.
    [4]
    季京晨. 花岗岩物理力学性质与宏微观力学特性研究[D]. 淮南: 安徽理工大学, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.

    JI J C. Study on the physical and mechanical properties of the granite and the micro-mechanical properties of the macro [D]. Huainan: Anhui University of Science & Technology, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.
    [5]
    钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010: 1–24.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010: 1–24.
    [6]
    张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
    [7]
    孙其然, 孙宇新, 李芮宇, 等. 带模拟装药弹体高速冲击岩石靶时的断裂特性 [J]. 爆炸与冲击, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.

    SUN Q R, SUN Y X, LI R Y, et al. Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock [J]. Explosion and Shock Waves, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.
    [8]
    张翼宇. 不同风化程度花岗岩破坏特征及损伤演化试验研究[D]. 郑州: 华北水利水电大学, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.

    ZHANG Y Y. Experimental study on failure properties and damage behavior of granite specimens with different weathering degrees [J]. Zhengzhou: North China University of Water Resources and Electric Power, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.
    [9]
    DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques [J]. Geotechnical & Geological Engineering, 2006, 24(5): 1307–1348. DOI: 10.1007/s10706-005-2023-z.
    [10]
    黄飞宇. 风化程度影响下花岗岩风化壳物理力学性质与微观特征研究[D]. 广州: 广州大学, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.

    HUANG F Y. Study on physical and mechanical properties and microscopic characteristics of granite weathering crust under the influence of weathering degree [D]. Guangzhou: Guangzhou University, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.
    [11]
    HAKALEHTO K O. Brittle fracture of rocks under impulse loads [J]. International Journal of Fracture Mechanics, 1970, 6(3): 249–256. DOI: 10.1007/BF00212655.
    [12]
    BASU A, MISHRA D A, ROYCHOWDHURY K. Rock failure modes under uniaxial compression, Brazilian, and point load tests [J]. Bulletin of Engineering Geology and the Environment, 2013, 72(3/4): 457–475. DOI: 10.1007/s10064-013-0505-4.
    [13]
    李传净. 花岗岩在冲击作用下的力学特性及破坏形态研究[D]. 西安: 西安科技大学, 2018: 13–37.

    LI C J. Study on mechanical properties and failure morphology of granite under impact [D]. Xi’an: Xi’an University of Science and Technology, 2018: 13–37.
    [14]
    宋耀. 不同加载率条件下花岗岩动态断裂及损伤机理试验研究[D]. 北京: 中国矿业大学(北京), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.

    SONG Y. Experimental study on dynamic fracture and damage mechanism of granite under different loading rates [D]. Beijing: China University of Mining and Technology (Beijing), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.
    [15]
    刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.

    LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.
    [16]
    李艳, 程禹翰, 翟越, 等. 高温后花岗岩微观结构演化特性与动态力学性能研究 [J]. 岩土力学, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.

    LI Y, CHENG Y H, ZHAI Y, et al. Micro-structure characteristics and dynamic mechanical properties of granite after high temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.
    [17]
    赵宁, 董硕, 陈熙宇, 等. 弱风化花岗岩的动态力学特性试验研究 [J]. 三峡大学学报(自然科学版), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.

    ZHAO N, DONG S, CHEN X Y, et al. Experimental investigation on the dynamic mechanical properties of weakly weathered granite [J]. Journal of China Three Gorges University (Natural Sciences), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.
    [18]
    张文峰. 不同风化程度作用下岩石破坏特性试验研究 [J]. 安徽建筑, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.

    ZHANG W F. Experimental study on failure properties of granite with different weathering degrees [J]. Anhui Architecture, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.
    [19]
    王政, 楼建锋, 勇珩, 等. 岩石、混凝土和土抗侵彻能力数值计算与分析 [J]. 高压物理学报, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.

    WANG Z, LOU J F, YONG H, et al. Numerical computation and analysis on anti-penetration capability of rock, concrete and soil [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.
    [20]
    李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [21]
    宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.

    SONG C M, LI G, WANG M Y, et al. Theoretical analysis of projectiles penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
    [22]
    李彦豪. 超高速撞击条件下重金属长杆弹对花岗岩靶的成坑规律研究[D]. 西安: 西安建筑科技大学, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.

    LI Y H. Study on pit formation of granite targets by heavy metal long rod projections under hypervelocity impact [D]. Xi’an: Xi’an University of Architecture and Technology, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.
    [23]
    聂铮玥, 丁育青, 宋江杰, 等. 花岗岩Kong-Fang流体弹塑性损伤材料模型参数研究 [J]. 爆炸与冲击, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.

    NIE Z Y, DING Y Q, SONG J J, et al. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite [J]. Explosion and Shock Waves, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.
    [24]
    ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014 [M]. Cham: Springer, 2015: 47–48. DOI: 10.1007/978-3-319-07713-0.
    [25]
    FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. DOI: 10.1007/BF02411056.
    [26]
    SHANG J L, SHEN L T, ZHAO J. Hugoniot equation of state of the Bukit Timah granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 705–713. DOI: 10.1016/S1365-1609(00)00002-2.
    [27]
    聂铮玥, 彭永, 陈荣, 等. 侵彻条件下岩石类材料RHT模型参数敏感性分析 [J]. 振动与冲击, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.

    NIE Z Y, PENG Y, CHEN R, et al. Sensitivity analysis of RHT model parameters for rock materials under penetrating condition [J]. Journal of Vibration and Shock, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.
    [28]
    左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B Earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
    [29]
    LI J, WANG M Y, CHENG Y H, et al. Analytical model of hypervelocity penetration into rock [J]. International Journal of Impact Engineering, 2018, 122: 384–394. DOI: 10.1016/j.ijimpeng.2018.08.008.
    [30]
    刘士践. 动能弹垂直侵彻混凝土的实验研究及其数值模拟[D]. 成都: 西南交通大学, 2007: 10–17.
    [31]
    高飞, 张国凯, 纪玉国, 等. 卵形弹体超高速侵彻砂浆靶的响应特性 [J]. 兵工学报, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.

    GAO F, ZHANG G K, JI Y G, et al. Response characteristics of hypervelocity ogive-nose projectile penetrating into mortar target [J]. Acta Armamentarii, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.
    [32]
    吕映庆, 陈南勋, 武海军, 等. 弹体高速侵彻超高性能混凝土靶机理 [J]. 兵工学报, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.

    LYU Y Q, CHEN N X, WU H J, et al. Mechanism of high-velocity projectile penetrating into ultra-high performance concrete target [J]. Acta Armamentarii, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.
    [33]
    张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究 [J]. 兵工学报, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.

    ZHANG X Y, WU H J, LI J Z, et al. Comparative study of projectiles penetrating into two kinds of concrete targets at high velocity [J]. Acta Armamentarii, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.
    [34]
    WU H J, WANG K H, YANG H, et al. Effects of gradient nanostructures on the tribological properties and projectile abrasion during high-speed penetration in AerMet100 steel [J]. Journal of Materials Research and Technology, 2023, 25: 5871–5887. DOI: 10.1016/j.jmrt.2023.06.277.
  • Relative Articles

    [1]HAN Minghai, LIU Chuang, LI Pengcheng, LIU Zihan, ZHANG Xianfeng. A study on structural response characteristics of projectile penetrating on granite target[J]. Explosion And Shock Waves, 2025, 45(1): 013302. doi: 10.11883/bzycj-2024-0145
    [2]ZHANG Zijian, CHEN Jun, ZHU Rui, YU Haoran, LI Ranxin, ZHANG Yuantong. Experiment on dynamic mechanical properties of sandstone based on Lagrangian inverse analysis method[J]. Explosion And Shock Waves, 2025, 45(3): 033101. doi: 10.11883/bzycj-2024-0152
    [3]WU Xuting, WANG Zhen, ZHOU Hang, ZHANG Guokai, LI Shuobiao. Study on dynamic mechanical properties of high-temperature concrete with different cooling methods[J]. Explosion And Shock Waves, 2025, 45(1): 011001. doi: 10.11883/bzycj-2024-0097
    [4]XIA Wei, LU Song, BAI Erlei, ZHAO Dehui, XU Jinyu, DU Yuhang. A study of dynamic compression behavior of carbon nanotubes reinforced concrete based on SHPB test[J]. Explosion And Shock Waves, 2024, 44(10): 101402. doi: 10.11883/bzycj-2023-0424
    [5]XIE Beijing, CHEN Mingjin, CHEN Siyu, LIU Zhiyao. Experimental study on mechanical properties of ice shock under different states[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0207
    [6]ZHAO Hongyuan, WU Haijun, DONG Heng, LYU Yingqing, HUANG Fenglei. An experimental study of anti-penetration performance of concrete-filled steel tube with honeycomb structure[J]. Explosion And Shock Waves, 2023, 43(5): 053101. doi: 10.11883/bzycj-2022-0050
    [7]HUANG Yaoying, QU Lu, LI Yubai, ZHAI Yue, XIE Yifan. Mechanical properties of granite under impact compression after real-time high temperature[J]. Explosion And Shock Waves, 2023, 43(2): 023202. doi: 10.11883/bzycj-2022-0196
    [8]ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173
    [9]YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
    [10]ZHU Yaoliang, YU Jin, GAO Haidong, LI Gang, ZHOU Xianqi, ZHENG Xiaoqing. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite[J]. Explosion And Shock Waves, 2019, 39(8): 083104. doi: 10.11883/bzycj-2019-0169
    [11]YU Liyuan, ZHU Zihan, MENG Qingbin, JING Hongwen, SU Haijian, HE Ming. Dynamic characteristics of marble damaged by cyclic loading[J]. Explosion And Shock Waves, 2019, 39(8): 083102. doi: 10.11883/bzycj-2019-0164
    [12]SU Guoshao, CHEN Guanyan, HU Xiaochuan, MEI Shiming, HUANG Xiaohua. Experimental study on influence of granite grain size on rockburst[J]. Explosion And Shock Waves, 2019, 39(12): 123103. doi: 10.11883/bzycj-2018-0419
    [13]LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140
    [14]QIU Jiadong, LI Diyuan, LI Xibing, CHENG Tengjiao, LI Chongjin. Effect of pre-existing flaws on spalling fracture of granite[J]. Explosion And Shock Waves, 2018, 38(3): 665-670. doi: 10.11883/bzycj-2016-0310
    [15]Wang Yunfei, Zheng Xiaojuan, Jiao Huazhe, Cheng Fengbin, Zhao Hongbo. Energy evolution mechanism and energy yield criterion in granite's failure process[J]. Explosion And Shock Waves, 2016, 36(6): 876-882. doi: 10.11883/1001-1455(2016)06-0876-07
    [16]Ding Yuan-yuan, Yang Li-ming, Wang Li-li. Experimental determination of dynamic constitutive parameters for aluminum foams[J]. Explosion And Shock Waves, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08
    [17]XIE Heng, Lü Zhen-hua. Identificationofdynamicconstitutiveparametersofahigh-strengthsteel andnumericalsimulation[J]. Explosion And Shock Waves, 2011, 31(3): 279-284. doi: 10.11883/1001-1455(2011)03-0279-06
    [18]ZHOU Nan, WANG Jin-xiang, WANG Xiao-xu, HANG Yi-fu, QIAN Ji-sheng, RONG Guang. Anti-penetrationperformancesofexplosivelyweldedsteel/aluminium platesimpactedbysphericalprojectiles[J]. Explosion And Shock Waves, 2011, 31(5): 497-503. doi: 10.11883/1001-1455(2011)05-0497-07
    [19]ZHOU Zhong, WANG Xiao-jun, XIAO Wei-guo, ZHAO Kai. Study on the main characteristics of underground explosion seismic source function in granite[J]. Explosion And Shock Waves, 2007, 27(1): 18-25. doi: 10.11883/1001-1455(2007)01-0018-08
  • Cited by

    Periodical cited type(19)

    1. 张焜琨,张耀良,夏云鹏,张中威,李杰,钱坤,徐阳,陈美常. 两座210m高烟囱定向爆破拆除空中对碰技术研究. 工程爆破. 2024(01): 96-103 .
    2. 费鸿禄,张志强,包士杰,张广贝. 框-筒结构楼房折叠爆破拆除数值模拟研究. 爆破. 2023(03): 134-142 .
    3. 胡彬,杨赛群,李洪伟,刘伟,王洪森,王富宁. 超高钢混烟囱爆破切口角度计算及数值模拟. 工程爆破. 2022(01): 99-106 .
    4. 高文乐,朱茂迅,李元振,张泽华. 发电厂双曲线型冷却塔的定向爆破拆除及爆破效果数值分析. 爆破器材. 2020(04): 52-57 .
    5. 叶家明,戴春阳,李洪伟,刘伟. 伞形水塔拆除爆破关键参数计算与数值模拟. 爆破. 2020(04): 106-110+144 .
    6. 徐鹏飞,唐英,张英才,王磊,张何,刘乐乐. 冷却塔高卸荷槽切口爆破拆除倒塌受力破坏过程研究. 爆破. 2019(04): 96-102+107 .
    7. 张龙飞,张超逸,费鸿禄,张建平. 延期时间对冷却塔爆破倒塌效果影响的研究. 爆破. 2018(03): 108-113+184 .
    8. 谢先启,姚颖康,贾永胜,罗启军,韩传伟,刘昌邦,黄小武. 冷却塔爆破拆除失稳机制与变形破坏特征研究. 爆破. 2017(02): 40-46 .
    9. 刘世波,曲云龙,薛里,孙崔源,康永全,付天杰. 高层建筑物单向三折叠爆破拆除数值模拟. 工程爆破. 2017(03): 77-80 .
    10. 杨小卫,许君风,胡江春. 基于AEM法的爆破拆除倒塌过程的数值模拟. 工程爆破. 2017(02): 11-16 .
    11. 何怡,张兆龙,何治良. 支撑部非对称雷达站塔的爆破拆除及数值模拟. 工程爆破. 2016(03): 54-57+73 .
    12. 迟力源,杨军. 250m超高钢筋混凝土烟囱套入式爆破拆除的数值模拟. 爆破. 2015(01): 101-105 .
    13. 冯剑平,李本平,黄平明,王蒂. 钢筋混凝土空心薄壁高墩爆破拆除数值模拟. 爆破. 2014(02): 91-94+118 .
    14. 冯剑平,黄平明,冯彬雪,朱郑,王蒂. 钢筋混凝土简支板梁桥爆破拆除数值模拟研究. 爆破. 2014(04): 82-86 .
    15. 徐鹏飞,褚怀保,张英才. 冷却塔在高卸荷槽切口下爆破拆除振动数值分析. 工程爆破. 2014(04): 11-14 .
    16. 黄平明,冯剑平,王蒂,朱郑. 钢筋混凝土简支板梁桥爆破拆除数值模拟. 建筑科学与工程学报. 2014(01): 56-62 .
    17. 王希之,吴建源,闫军,柴金泉. 高耸烟囱爆破拆除数值模拟及分析. 爆破. 2013(03): 43-48+124 .
    18. 贺五一,杨智旭,吴建源,薛峰松,谭雪刚. 锦州电厂240m高钢筋混凝土烟囱爆破拆除. 爆破. 2013(04): 87-91 .
    19. 龚相超,钟冬望,杨泰华,李林玥. 基于阶梯压杆模型和最小势能原理的立柱爆高计算. 爆破. 2012(03): 27-30+41 .

    Other cited types(15)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(4)

    Article Metrics

    Article views (472) PDF downloads(164) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return