Citation: | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[1] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
|
[2] |
O’NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures [J]. Shock and Vibration, 1999, 6(5/6): 237–245.
|
[3] |
张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
|
[4] |
聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究 [J]. 爆炸与冲击, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.
NIE X D, WU X Y, LONG Z L, et al. Research on penetration depth of projectiles into ultra-high performance concrete targets [J]. Explosion and Shock Waves, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.
|
[5] |
PENG Y, WU H, FANG Q, et al. Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm [J]. International Journal of Impact Engineering, 2016, 88: 201–213. DOI: 10.1016/j.ijimpeng.2015.10.011.
|
[6] |
WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
|
[7] |
PENG Y, WU H, FANG Q, et al. Flat nosed projectile penetrating into UHP-SFRC target: experiment and analysis [J]. International Journal of Impact Engineering, 2016, 93: 88–98. DOI: 10.1016/j.ijimpeng.2016.02.012.
|
[8] |
WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
|
[9] |
ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
|
[10] |
ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
|
[11] |
LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032.
|
[12] |
LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
|
[13] |
LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
|
[14] |
FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298.
|
[15] |
FAN Y, CHEN L, XIANG H B, et al. Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion [J]. Defence Technology, 2023, 23: 50–59. DOI: 10.1016/j.dt.2022.02.009.
|
[16] |
GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
|
[17] |
CHENG Y H, ZHOU F, WU H, et al. Resistance of composite target against combined effects of large caliber projectile penetration and successive charge explosion [J]. International Journal of Impact Engineering, 2022, 168: 104288. DOI: 10.1016/j.ijimpeng.2022.104288.
|
[18] |
程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
|
[19] |
YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
|
[20] |
WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of penetration and explosion integration based on volume filling method [J]. International Journal of Impact Engineering, 2023, 177: 104591. DOI: 10.1016/j.ijimpeng.2023.104591.
|
[21] |
杨石刚, 罗泽, 许继恒, 等. 侵彻爆炸作用下钢纤维混凝土结构的破坏模式 [J]. 爆炸与冲击, 2024, 44(1): 015102. DOI: 10.11883/bzycj-2023-0003.
YANG S G, LUO Z, XU J H, et al. Failure modes of concrete structure under penetration and explosion [J]. Explosion and Shock Waves, 2024, 44(1): 015102. DOI: 10.11883/bzycj-2023-0003.
|
[22] |
LS-DYNA. Keyword user’s manual: version 971 [M]. Livermore: Livermore Software Technology Corporation, 2007.
|
[23] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[24] |
ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
|
[25] |
KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j.ijimpeng.2019.103445.
|
[26] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[27] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[1] | WU Hao, CEN Guohua, CHENG Yuehua, ZHANG Yu. Design of shield based on integrated effect of penetration and moving charge explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(5): 053301. doi: 10.11883/bzycj-2024-0244 |
[2] | WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(4): 043302. doi: 10.11883/bzycj-2024-0136 |
[3] | YANG Yaozong, KONG Xiangzhen, TANG Junjie, FANG Qin. Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0279 |
[4] | YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003 |
[5] | SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343 |
[6] | HONG Zhijie, YANG Yaozong, KONG Xiangzhen, FANG Qin. Practical engineering calculation models for rigid projectile penetrating and perforating into concrete target[J]. Explosion And Shock Waves, 2023, 43(8): 083302. doi: 10.11883/bzycj-2022-0482 |
[7] | ZHU Qing, LI Shutao, CHEN Yeqing, MA Shang. Preliminary theoretical study on the rebound effect of projectiles penetrating ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2023, 43(9): 091405. doi: 10.11883/bzycj-2022-0513 |
[8] | CHENG Yuehua, ZHOU Fei, WU Hao. Design of concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves, 2023, 43(4): 045101. doi: 10.11883/bzycj-2022-0346 |
[9] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[10] | WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174 |
[11] | CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278 |
[12] | DONG Kai, REN Huiqi, RUAN Wenjun, HUANG Kui, BU Pengfei. Dynamic constitutive model of coral sand under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172 |
[13] | LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191 |
[14] | LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389 |
[15] | GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428 |
[16] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[17] | DengYun-fei, ZhangWei, CaoZong-sheng, YeNan, WangYang. Influencesoflayerorderonballisticresistanceof double-layeredthinA3steelplates[J]. Explosion And Shock Waves, 2013, 33(3): 263-269. doi: 10.11883/1001-1455(2013)03-0263-06 |
[19] | LIANG Long-he, WANG Zheng, CAO Ju-zhen. Damaging effect of concrete by penetration and explosion of a long-rod projectile[J]. Explosion And Shock Waves, 2008, 28(5): 415-420. doi: 10.11883/1001-1455(2008)05-0415-06 |
[20] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
1. | 吴昊,张瑜,程月华,岑国华. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计. 爆炸与冲击. 2025(04): 111-124 . ![]() | |
2. | 吴昊,岑国华,程月华,张瑜. 基于战斗部侵彻动爆一体化效应的遮弹层设计. 爆炸与冲击. 2025(05): 90-105 . ![]() |