TANG Tie-gang, GUI Yu-lin, LI Qing-zhong, CHEN Yong-tao, TONG Hui-feng, LIU Cang-li. Adiscussionofdataprocessingtechniquesforexpandingringtest[J]. Explosion And Shock Waves, 2010, 30(5): 505-510. doi: 10.11883/1001-1455(2010)05-0505-06
Citation: WANG Yuxiang, ZHANG Guokai, LIU Liwang, WU Yuxin, LIU Ju, JIANG Long. Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions[J]. Explosion And Shock Waves, 2025, 45(5): 053302. doi: 10.11883/bzycj-2024-0177

Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions

doi: 10.11883/bzycj-2024-0177
  • Received Date: 2024-06-12
  • Rev Recd Date: 2024-10-06
  • Available Online: 2025-02-21
  • Publish Date: 2025-05-01
  • High-strength steel has excellent mechanical properties, which has been utilized in the fields of explosion and impact. In order to study the blast resistance of high-strength steel plates, ANSYS/LS-DYNA software was first used to simulate the impact test on high-strength steel materials. By comparing with experimental results, the Johnson-Cook model parameters characterizing the dynamic constitutive behavior of high-strength steel are determined. Based on the above model parameters, the explosion simulation of high-strength steel plates under near-field explosions is further carried out. The interaction process between the explosion shock wave and the steel plate is systematically analyzed, and the size effects of the steel plate on its deformation characteristics and failure mode are explained. The results show that the Johnson-Cook model can effectively simulate the mechanical behavior of S690 high-strength steel at high strain rates. High-strength steel plates have a weakening effect on the propagation of shock waves. With the increase of steel plate thickness, the propagation range of shock wave through steel plate decreases gradually. For high-strength steel plates of different geometric dimensions, near-field explosions will cause three damage modes: petal-shaped fracture, small fracture and large deformation. It is found that the thickness is the decisive factor to determine the failure mode of steel plates under near-field explosions. For high-strength steel plates with large deformation, the increase of thickness and decrease of width will improve the ability of resistance to near-field explosions. In addition, there is a positive correlation between the ability of shock resistance of the high-strength steel plate and the width-thickness ratio. When the proportional distance is 0.13, a model can be provided to predict the maximum displacement range of the high-strength steel plate according to the steel plate size. The above conclusions can provide some guiding significance for the optimal design and engineering application of high-strength steel structures.
  • [1]
    WANG X, LIU C, ZHOU Z Q, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations [J]. Journal of Materials Research and Technology, 2021, 13: 823–833. DOI: 10.1016/j.jmrt.2021.05.010.
    [2]
    WANG X, CHEN J G, SU G F, et al. Application of electromagnetism method to characterize the degradation behavior in structural mild steel within the elastic range [J]. Construction and Building Materials, 2020, 241: 118011. DOI: 10.1016/j.conbuildmat.2020.118011.
    [3]
    LIU J, WU C Q, LI C G, et al. Blast testing of high performance geopolymer composite walls reinforced with steel wire mesh and aluminium foam [J]. Construction and Building Materials, 2019, 197: 533–547. DOI: 10.1016/j.conbuildmat.2018.11.207.
    [4]
    AL-THAIRY H. A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load [J]. International Journal of Impact Engineering, 2016, 94: 120–133. DOI: 10.1016/j.ijimpeng.2016.04.007.
    [5]
    SUN Y X, WANG X, JI C, et al. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact [J]. Defence Technology, 2021, 17(4): 1496–1513. DOI: 10.1016/j.dt.2020.08.005.
    [6]
    CHEN A Q, LOUCA L A, ELGHAZOULI A Y. Behaviour of cylindrical steel drums under blast loading conditions [J]. International Journal of Impact Engineering, 2016, 88: 39–53. DOI: 10.1016/j.ijimpeng.2015.09.007.
    [7]
    ZHOU Z Q, CHEN J G, YUAN H Y, et al. The role of Al reaction rate in the damage effect and energy output of RDX-based aluminized explosives in concrete [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(3): 319–326. DOI: 10.1002/prep.201800093.
    [8]
    WU T Y, JIANG N, ZHOU C B, et al. Evaluate of anti-explosion for high-pressure gas steel pipeline subjected to ground explosion [J]. Journal of Constructional Steel Research, 2021, 177: 106429. DOI: 10.1016/j.jcsr.2020.106429.
    [9]
    汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188.

    WANG W, LIU G K, ZHAO Q, et al. Study on the distribution function of blast loads on the surface of a square plate under near-explosion [J]. Science China: Physics, Mechanics, and Astronomy, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188.
    [10]
    GAN L, ZONG Z H, CHEN Z J, et al. Differences in responses of square steel plates exposed to blast loads generated by cubic and spherical explosives [J]. Thin-Walled Structures, 2023, 182: 110332. DOI: 10.1016/j.tws.2022.110332.
    [11]
    施龙, 李建平, 王川. 爆炸作用下板壳结构响应特性研究 [J]. 爆破器材, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007.

    SHI L, LI J P, WANG C. Response characteristic research of shell structures under blasting [J]. Explosive Materials, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007.
    [12]
    杨锐, 汪泉, 谢守冬, 等. 负压爆炸载荷作用下固支钢板变形研究 [J]. 高压物理学报, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685.

    YANG R, WANG Q, XIE S D, et al. Deformation of fixed support steel plate under explosion load in negative pressure environment [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685.
    [13]
    WIERZBICKI T, NURICK G N. Large deformation of thin plates under localised impulsive loading [J]. International Journal of Impact Engineering, 1996, 18(7/8): 899–918. DOI: 10.1016/S0734-743X(96)00027-9.
    [14]
    ZHOU Z Q, DU Z C, ZHANG Y L, et al. Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load [J]. Defence Technology, 2024, 32: 430–442. DOI: 10.1016/j.dt.2023.03.025.
    [15]
    赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.

    ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
    [16]
    GAN L, ZONG Z H, LIN J, et al. Influence of U-shaped stiffeners on the blast-resistance performance of steel plates [J]. Journal of Constructional Steel Research, 2022, 188: 107046. DOI: 10.1016/j.jcsr.2021.107046.
    [17]
    侯晓萌, 曹少俊, 郑文忠. 爆炸荷载作用下钢板-RPC抗爆门动态响应分析 [J]. 建筑结构学报, 2016, 37(S1): 219–226, 232. DOI: 10.14006/j.jzjgxb.2016.S1.031.

    HOU X M, CAO S J, ZHENG W Z. Analysis on dynamic response of steel-RPC anti-explosion doors under blast load [J]. Journal of Building Structures, 2016, 37(S1): 219–226, 232. DOI: 10.14006/j.jzjgxb.2016.S1.031.
    [18]
    SHI G, HU F X, SHI Y J. Recent research advances of high strength steel structures and codification of design specification in China [J]. International Journal of Steel Structures, 2014, 14(4): 873–887. DOI: 10.1007/s13296-014-1218-7.
    [19]
    王蕾. S690QL高强度钢材在不同应力状态下的断裂破坏研究 [J]. 机械工程师, 2019(8): 100–102.

    WANG L. Fracture failure investigation of S690QL high strength steel under different stress states [J]. Mechanical Engineer, 2019(8): 100–102.
    [20]
    ALABI A A, MOORE P L, WROBEL L C, et al. Tensile behaviour of S690QL and S960QL under high strain rate [J]. Journal of Constructional Steel Research, 2018, 150: 570–580. DOI: 10.1016/j.jcsr.2018.08.009.
    [21]
    CAI W Y, LI G Q. Experimental study on post-fire mechanical properties and fracture behavior of Q690 steel [J]. Thin-Walled Structures, 2023, 193: 111253. DOI: 10.1016/j.tws.2023.111253.
    [22]
    张秀华, 张唯佳, 张宇. Q460高强钢柱在近爆荷载作用下的动力响应研究 [J]. 振动与冲击, 2022, 41(3): 107–114, 147. DOI: 10.13465/j.cnki.jvs.2022.03.013.

    ZHANG X H, ZHANG W J, ZHANG Y. Dynamic response of Q460 high strength steel column under near explosion load [J]. Journal of Vibration and Shock, 2022, 41(3): 107–114, 147. DOI: 10.13465/j.cnki.jvs.2022.03.013.
    [23]
    LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. DOI: 10.1016/j.ijimpeng.2014.12.008.
    [24]
    常笑康, 罗本永, 陈长海, 等. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究 [J]. 高压物理学报, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.

    CHANG X K, LUO B Y, CHEN C H, et al. Study on the blast-resistant performance and influence factors of high-toughness steel subjected to close-range air-blasts [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.
    [25]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26]
    YANG X Q, YANG H, ZHANG S M. Rate-dependent constitutive models of S690 high-strength structural steel [J]. Construction and Building Materials, 2019, 198: 597–607. DOI: 10.1016/j.conbuildmat.2018.11.285.
    [27]
    KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case [J]. Progress in Materials Science, 2003, 48(3): 171–273. DOI: 10.1016/S0079-6425(02)00003-8.
    [28]
    NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2.
    [29]
    陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.

    CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.
    [30]
    李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.

    LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30, 36. DOI: 10.11809//bqzbgcxb2021.04.005. DOI: 10.11809/bqzbgcxb2021.04.005.
  • Relative Articles

    [1]LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves, 2025, 45(3): 033103. doi: 10.11883/bzycj-2024-0069
    [2]CHEN Nengxiang, ZHONG Wei, WANG Shufei, YANG Shanglin, TIAN Zhou, OU Xiang, HUANG Huaiwei, YAO Xiaohu. Study on geometric similarity law of steel frame under a far-field explosion load[J]. Explosion And Shock Waves, 2023, 43(1): 013101. doi: 10.11883/bzycj-2021-0498
    [3]GAN Lu, CHEN Li, ZONG Zhouhong, QIAN Haimin. Definition of scaled distance of close-in explosion and blast load calculation model[J]. Explosion And Shock Waves, 2021, 41(6): 064902. doi: 10.11883/bzycj-2020-0194
    [4]WU Xingxing, LIU Jianhu, WANG Jun, WANG Haikun, GAO Tao, LIU Guozhen. Experimental research on damaging characteristics of cabin model attacking from shipboard direction under close-in underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111405. doi: 10.11883/bzycj-2020-0066
    [5]WU Xingxing, WANG Jun, LIU Jianhu, LIU Guozhen, WANG Haikun. Damaging characteristics of a cabin model under close-in underwater explosion from bottom attacting[J]. Explosion And Shock Waves, 2020, 40(11): 111406. doi: 10.11883/bzycj-2020-0067
    [6]LI Lingfeng, WEI Zhuobin, TANG Ting, DONG Qi, LIU Jinghan, QIU Yanyu. Damage effects of the caisson gravity wharf model subjected to explosion[J]. Explosion And Shock Waves, 2019, 39(1): 012202. doi: 10.11883/bzycj-2017-0406
    [7]LI Dian, HOU Hailiang, ZHU Xi, CHEN Changhai, LI Mao. A theoretical model for the evaluation of protective capability of a sandwich bulkhead structure in the close range of warhead explosion[J]. Explosion And Shock Waves, 2019, 39(2): 022201. doi: 10.11883/bzycj-2017-0351
    [8]XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187
    [9]Ren Jie, Xu Yuxin, Wang Shushan. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles[J]. Explosion And Shock Waves, 2017, 37(4): 629-636. doi: 10.11883/1001-1455(2017)04-0629-08
    [10]Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
    [11]Deng Xiao-qiu, Li Zhi-qiang, Zhou Zhi-wei, Wang Zhi-hua, Yao Xiao-hu. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates[J]. Explosion And Shock Waves, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08
    [12]XIE Heng, Lü Zhen-hua. Identificationofdynamicconstitutiveparametersofahigh-strengthsteel andnumericalsimulation[J]. Explosion And Shock Waves, 2011, 31(3): 279-284. doi: 10.11883/1001-1455(2011)03-0279-06
    [13]ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
    [14]SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05
    [15]CHEN Gang, CHEN Zhong-fu, XU Wei-fang, CHEN Yong-mei, HUANG Xi-cheng. Investigation on the J-C ductile fracture parameters of 45 steel[J]. Explosion And Shock Waves, 2007, 27(2): 131-135. doi: 10.11883/1001-1455(2007)02-0131-05
  • Cited by

    Periodical cited type(7)

    1. 李嘉皓,徐便,郑宇轩,周风华. 液压膨胀环恒应变率加载技术. 爆炸与冲击. 2023(02): 121-129 . 本站查看
    2. 郭昭亮,任国武,张世文,汤铁钢,刘仓理. 膨胀柱壳恒定应变率的本构关系. 爆炸与冲击. 2016(05): 583-589 . 本站查看
    3. 郭昭亮,范诚,刘明涛,汤铁钢,刘仓理. 膨胀环受力历史对应力应变关系的影响. 爆炸与冲击. 2016(06): 819-824 . 本站查看
    4. 郑宇轩,周风华,胡时胜,余同希. 固体的冲击拉伸碎裂. 力学进展. 2016(00): 506-540 .
    5. 刘明涛,汤铁钢,郭昭亮,张振涛,刘仓理. 膨胀环实验平台及其在材料动力学行为研究中的应用. 实验力学. 2016(01): 47-56 .
    6. 汤铁钢,刘仓理. 高应变率拉伸加载下无氧铜的本构模型. 爆炸与冲击. 2013(06): 581-586 . 本站查看
    7. 汤铁钢,李庆忠,陈永涛,童慧峰,刘仓理. 爆炸膨胀环一维应力假定的分析与讨论. 爆炸与冲击. 2010(06): 577-582 . 本站查看

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (203) PDF downloads(82) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return