Shi Jianjun, Li Qingya, Zhang Qi, Wei Xing, Wang Hui. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network[J]. Explosion And Shock Waves, 2017, 37(6): 1087-1092. doi: 10.11883/1001-1455(2017)06-1087-06
Citation: QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, KOCHARYAN Gevorg Grantovich. A study on the viscous characteristics of granular fault gouge under low and high slip rates[J]. Explosion And Shock Waves, 2025, 45(6): 061443. doi: 10.11883/bzycj-2024-0395

A study on the viscous characteristics of granular fault gouge under low and high slip rates

doi: 10.11883/bzycj-2024-0395
  • Received Date: 2024-10-18
  • Rev Recd Date: 2025-01-08
  • Available Online: 2025-01-08
  • Publish Date: 2025-06-10
  • The viscous characteristics of granular fault gouge significantly impact the dynamic mechanical behavior of faults, yet the problem of determining the viscosity of these interlayers at different slip velocities remains unresolved. This article presents theoretical research on this issue. The Maxwell relaxation model was employed to study the evolution of force chains in granular fault gouge during slow shearing of granular gouge, and the dependence of force chain length on shear strain rate, effective extension speed of shear bands, and strength of the granular medium was derived. The relaxation time of the shear band in granular fault gouge, the expression for the viscosity coefficient of the granular medium, and the conditions for the transformation of solid-liquid mechanical behavior of the granular medium were established. The validity of this model was verified through comparison with existing experimental data. For high-speed fault slip shear, the motion of the granular medium exhibits turbulent characteristics. Statistical physics was used to describe the interaction between granular particles in granular fault gouge, and it was found that the viscosity coefficient is inversely proportional to the shear rate at high slip rates. The research results have fundamental significance for understanding the viscous and other physico-mechanical properties of granular gouge in faults.
  • [1]
    SADOVSKY M A, BOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process[M]. Nauka, Moscow, 1987.
    [2]
    BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquake [J]. Science, 1966, 153(3739): 990–992. DOI: 10.1126/science.153.3739.990.
    [3]
    KOSTROV B V. Mechanics of sources of tectonic earthquakes[M]. Nauka, Moscow, 1975.
    [4]
    KANAMORI H, STEWART G S. Mode of strain release along Gibbs fracture zone, mid-atlantic ridge [J]. Physics of the Earth and Planetary Interiors, 1976, 11(4): 312–332. DOI: 10.1016/0031-9201(76)90018-2.
    [5]
    AKI K, BOUCHON M, CHOUET B, et al. Quantitative prediction of strong motion for a potential earthquake fault [J]. Annals of Geophysics, 2010, 53(1): 81–91. DOI: 10.4401/ag-4665.
    [6]
    MYACHKIN V I. Preparation processes of earthquakes[M]. Nauka, Moscow, 1978.
    [7]
    DIETRICH J H. Modeling of rock friction: 1. experimental results and constitutive equations [J]. Journal of Geophysical Research, 1979, 84(B5): 2161–2168. DOI: 10.1029/JB084iB05p02161.
    [8]
    RICE J R, RUINA A L. Stability of steady frictional slipping [J]. Journal of Applied Mechanics, 1983, 50(2): 343–349. DOI: 10.1115/1.3167042.
    [9]
    SCHOLZ C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, 1990.
    [10]
    DOBROVOLSKY I P. Theory of preparation of tectonic earthquakes[M]. Nauka, Moscow, 1991.
    [11]
    DOBROVOLSKY I P. The mathematical theory of earthquake preparation and prediction[M]. Fizmatlit, Moscow, 2009.
    [12]
    SOBOLEV G A, PONOMOREV A V. The Physics of Earthquakes and Precursors[M]. Nauka, Moscow, 2003.
    [13]
    KOCHARYAN G G. Geomechanics of faults[M]. Geos, Moscow, 2016.
    [14]
    SCHOLZ C H, CAMPOS J. The seismic coupling of subduction zones revisited [J]. Journal of Geophysical Research, 2012, 117(B5): 1–22. DOI: 10.1029/2011JB009003.
    [15]
    CARPENTER B M, IKARI M J, MARONE C. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 1183–1201. DOI: 10.1002/2015JB012136.
    [16]
    IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability [J]. Geology, 2011, 39(1): 83–86. DOI: 10.1130/G31416.1.
    [17]
    BOATWRIGHT J, COCCO M. Frictional constraints on crustal faulting [J]. Journal of Geophysical Research, 1996, 101(B6): 13895–13909. DOI: 10.1029/96jb00405.
    [18]
    PERSSON B N J. Sliding friction: physical principles and applications[M]. Nano Science and Technology. Springer-Verlag, Berlin and Heidelberg, 1998.
    [19]
    MUSER M H, URBAKH M, ROBBINS M O. Statistical mechanics of static and low-velocity kinetic friction [J]. Advances in Chemical Physics, 2003, 126: 187–272.
    [20]
    BAUBERGER T, CAROLI C. Solid friction from stick-slip down to pinning and aging [J]. Advances in Physics., 2006, 55(3/4): 279–348. DOI: 10.1080/00018730600732186.
    [21]
    ZHENG G, RICE J R. Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture [J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1466–1483. DOI: 10.1016/S0040-1951(98)00192-9.
    [22]
    RICE J R, LAPUSTA N, RANJITH K. Rate and state dependent friction and the stability of sliding between elastically deformable solids [J]. Journal of Mechanics and Physics of Solids, 2001, 49(9): 1865–1898. DOI: 10.1016/S0022-5096(01)00042-4.
    [23]
    DI TORO G, HIROSE T, NIELSEN S, et al. Natural and experimental evidence of melt lubrication of faults during earthquakes [J]. Science, 2006, 311(5761): 647–649. DOI: 10.1126/science.1121012.
    [24]
    DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–8. DOI: 10.1038/nature09838.
    [25]
    GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
    [26]
    AHARONOV E, SCHOLZ C H. A physics-based rock friction constitutive law: Steady state friction [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
    [27]
    SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
    [28]
    CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): 021024. DOI: 10.1029/2020JB021024.
    [29]
    SELVADURAI P, GLASER S. Asperity generation and its relationship to seismicity on a planar fault: A laboratory simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
    [30]
    RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J]. Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
    [31]
    IKARI M J, MARONE C, SAFFER D M, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences, 2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
    [32]
    CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
    [33]
    BYERLEE J D. Friction of rocks [J]. Pure and Applied Geophysics, 1978, 116(4/5): 615–626. DOI: 10.1007/BF00876528.
    [34]
    CHESTER J S, CHESTER F M, KRONENBERG A K. Fracture surface energy of the Punchbowl fault, San Andreas system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
    [35]
    SIBSON R H. Thickness of the seismic slip zone[J]. Bulletin of the Seismological Society of America. 2003, 93 (3): 1169–1178. DOI: 10.1785/0120020061.
    [36]
    MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
    [37]
    ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
    [38]
    RICHEFEU V, El YOUSSOUFI MS, AZEMA E, et al. Force transmission in dry and wet granular media [J]. Powder Technology, 2009, 190(1/2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
    [39]
    KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge material composition in laboratory experiments [J]. Geophysical Journal International, 2017, 208(1): 521–528. DOI: 10.1093/gji/ggw409.
    [40]
    BUDKOV A M, KOCHARYAN G G. Experimental study of different modes of block sliding along interface: part 3: numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
    [41]
    OSTAPCHUK A A, MOROZOVA K G. On the mechanism of laboratory earthquake nucleation highlighted by acoustic emission [J]. Scientific Reports, 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
    [42]
    OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic emission reveals multiple slip modes on a frictional fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
    [43]
    LU K, BRODSY E E, KAVEHPOUR H P. Shear-weakening of the transitional regime for granular flow: the role of compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
    [44]
    HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
    [45]
    POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience, 2021, 14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
    [46]
    FAGERENG A, BEALL A. Is complex fault zone behaviour a reflection of rheological heterogeneity? [J]. Philosophical Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
    [47]
    RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
    [48]
    TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J]. Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.
    [49]
    LANDAU L D, LIFSHITZ E M. Theory of elasticity[M]. Pergamon, New York, 1959.
    [50]
    ALONSO-MARROQUIN F, VARDOULAKIS I. Micromechanics of shear bands in granular media[C]//Powders and Grains 2005-Proceedings of the 5th International Conference on Micromechanics of Granular Media (2005), The Netherlands: A. A. Balkema, Leiden, 2005: 701–704.
    [51]
    ABEDI S, RECHENMACHER A L, ORLANDO A D. Vortex formation and dissolution in sheared sand [J]. Granular Matter, 2012, 14(6): 695–705. DOI: 10.1007/s10035-012-0369-5.
    [52]
    KIM V A, KARIMOV S A. Manifestation of physical mesomechanics at contact interaction [J]. Journal of state technical university of komsomolsky at Amur, Science on nature and technique, 2014, 1(18): 79–85.
    [53]
    BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquid[M]. 2nd ed. Wiley, New York, 1987.
    [54]
    CHOW T S. Mesoscopic physics of complex materials[M]. Springer, New York, 2000.
    [55]
    SIMMONS J H, Mohr R K, MONTROSE C J. Non-newtonian viscous flow in glass[J]. Journal of Applied Physics, 1982, 53(6): 4075–4080. DOI: 10.1063/1.331272.
    [56]
    SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 105(3), 1988: 313–322. DOI: 10.1016/0022-3093(88)90325-0.
    [57]
    SIMMONS J H. What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites[J]. Journal of Non-Crystalline Solids, 1988, 239: 1–15. DOI: 10.1016/S0022-3093(98)00741-8.
    [58]
    GRADY D E. Shock wave properties of brittle solids: 950846 [R]. Sandia National Laboratory, 1995: 9–20.
  • Cited by

    Periodical cited type(27)

    1. 崔红艳,张子禄,胡静,张荣国,王桐,王勇. 基于TPE-BP神经网络的爆破振速预测模型研究. 矿业研究与开发. 2024(05): 53-58 .
    2. 陈梓薇,王仲琦,曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法. 爆炸与冲击. 2024(05): 132-141 . 本站查看
    3. 戴增杰,梁昊,王贵,李洪伟,魏正,储亚坤,王多良. 基于3种神经网络算法的露天矿山台阶爆破块度预测. 煤矿爆破. 2024(04): 1-6+11 .
    4. 郭映聪. 基于小波分析基坑钻爆开挖地震效应预测研究. 市政技术. 2023(02): 126-132 .
    5. 张云鹏,葛晓东,武旭,王杰. 爆破地震波入射角度对振动和放大效应的影响. 工程爆破. 2023(01): 122-129 .
    6. 张勇,李旋,尹燕良,李富杰. 基于萤火虫算法优化BP神经网络的爆破振速预测. 人民长江. 2023(05): 231-236 .
    7. 张西良,焦灏恺,李二宝. 基于迁移学习算法的深部爆破振动速度预测. 中国安全科学学报. 2023(06): 64-72 .
    8. 肖师云,冯成良,陈文,刘俞平. 基于BP神经网络的破片聚焦曲线优化. 兵工自动化. 2022(01): 43-47 .
    9. 田海勇,王靖岳,李建刚. 齿轮箱复合故障诊断系统设计. 机械工程与自动化. 2022(03): 135-137+140 .
    10. 范勇,裴勇,杨广栋,冷振东,卢文波. 基于改进PSO-BP神经网络的爆破振动速度峰值预测. 振动与冲击. 2022(16): 194-203+302 .
    11. 张齐,贾文超,莫爵同. BP神经网络模型在深基坑爆破振速上的应用研究. 广东土木与建筑. 2021(02): 80-83 .
    12. 李峰. 台阶爆破逐孔起爆网路的设计与应用. 爆破器材. 2021(02): 58-64 .
    13. 何理,杨仁树,钟东望,李鹏,吴春平,陈江伟. 毫秒延时爆破等效单响药量计算及振速预测. 爆炸与冲击. 2021(09): 132-144 . 本站查看
    14. 张童康,师芸,童锋,刘丽霞,闫倩倩. 改进GWO-BP算法的概率积分法预计参数求取. 中国矿业. 2021(12): 45-52 .
    15. 方国富,于显浩,邱伟,刘美山,杨招伟,黎绍光. 复杂地形下基于BFO-LSSVM模型爆破振动预测研究. 市政技术. 2021(12): 147-151 .
    16. 胡晓冰,陈志远,魏格平,魏正,王贵,宋家旺. 基于BP神经网络的爆破振动预测系统. 矿业研究与开发. 2020(09): 154-158 .
    17. 赵红梦,姜志侠. PCA-BP算法在地面爆破振动中的应用. 工程爆破. 2020(05): 30-35 .
    18. 冯佩,李俣. 基于人工神经网络和粒子群优化的半导体激光器参数反向设计方法. 中国激光. 2019(07): 9-15 .
    19. 高启栋,卢文波,杨招伟,严鹏,陈明. 水平光面爆破激发地震波的成分及衰减特征. 爆炸与冲击. 2019(08): 170-182 . 本站查看
    20. 吕伟才,黄晖,池深深,韩必武. 概率积分预计参数的神经网络优化算法. 测绘科学. 2019(09): 35-41 .
    21. 黄德东,王清华,邢亮亮,徐丰,吴斌. Hopkinson拉杆平板挂钩试件结构智能协同优化. 爆炸与冲击. 2019(10): 119-131 . 本站查看
    22. 吴星煌,朱南海,陈志强,冯冲冲. 基于性能的钢框架-钢板剪力墙塑性优化设计思路. 江西理工大学学报. 2019(05): 22-30 .
    23. 冷智高,李祥龙,程明,宋春辉,陶子豪. BP神经网络在爆破振动中的研究与应用. 有色金属(矿山部分). 2019(06): 9-12 .
    24. 赵明生,张光雄,刘军,李继业,余红兵,刘强,何兴贵. 露天台阶爆破智能化设计软件. 爆破. 2018(02): 72-79 .
    25. 裴成禹. 基于卡尔曼滤波的网球发球最佳击球点预测系统. 现代电子技术. 2018(11): 162-165+170 .
    26. 任少峰,周俊,张修玉,李玉能,邓涛,蒲恒强. 基于BP神经网络模型的爆破对邻近管道振动预测研究. 矿业研究与开发. 2018(09): 104-108 .
    27. 苟倩倩,赵明生,池恩安,何兴贵,黄胜松. 基于PCA-BP神经网络在爆破振动评价要素中的预测及应用. 矿业研究与开发. 2018(12): 97-102 .

    Other cited types(19)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (118) PDF downloads(38) Cited by(46)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return