Citation: | QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, KOCHARYAN Gevorg Grantovich. A study on the viscous characteristics of granular fault gouge under low and high slip rates[J]. Explosion And Shock Waves, 2025, 45(6): 061443. doi: 10.11883/bzycj-2024-0395 |
[1] |
SADOVSKY M A, BOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process[M]. Nauka, Moscow, 1987.
|
[2] |
BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquake [J]. Science, 1966, 153(3739): 990–992. DOI: 10.1126/science.153.3739.990.
|
[3] |
KOSTROV B V. Mechanics of sources of tectonic earthquakes[M]. Nauka, Moscow, 1975.
|
[4] |
KANAMORI H, STEWART G S. Mode of strain release along Gibbs fracture zone, mid-atlantic ridge [J]. Physics of the Earth and Planetary Interiors, 1976, 11(4): 312–332. DOI: 10.1016/0031-9201(76)90018-2.
|
[5] |
AKI K, BOUCHON M, CHOUET B, et al. Quantitative prediction of strong motion for a potential earthquake fault [J]. Annals of Geophysics, 2010, 53(1): 81–91. DOI: 10.4401/ag-4665.
|
[6] |
MYACHKIN V I. Preparation processes of earthquakes[M]. Nauka, Moscow, 1978.
|
[7] |
DIETRICH J H. Modeling of rock friction: 1. experimental results and constitutive equations [J]. Journal of Geophysical Research, 1979, 84(B5): 2161–2168. DOI: 10.1029/JB084iB05p02161.
|
[8] |
RICE J R, RUINA A L. Stability of steady frictional slipping [J]. Journal of Applied Mechanics, 1983, 50(2): 343–349. DOI: 10.1115/1.3167042.
|
[9] |
SCHOLZ C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, 1990.
|
[10] |
DOBROVOLSKY I P. Theory of preparation of tectonic earthquakes[M]. Nauka, Moscow, 1991.
|
[11] |
DOBROVOLSKY I P. The mathematical theory of earthquake preparation and prediction[M]. Fizmatlit, Moscow, 2009.
|
[12] |
SOBOLEV G A, PONOMOREV A V. The Physics of Earthquakes and Precursors[M]. Nauka, Moscow, 2003.
|
[13] |
KOCHARYAN G G. Geomechanics of faults[M]. Geos, Moscow, 2016.
|
[14] |
SCHOLZ C H, CAMPOS J. The seismic coupling of subduction zones revisited [J]. Journal of Geophysical Research, 2012, 117(B5): 1–22. DOI: 10.1029/2011JB009003.
|
[15] |
CARPENTER B M, IKARI M J, MARONE C. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 1183–1201. DOI: 10.1002/2015JB012136.
|
[16] |
IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability [J]. Geology, 2011, 39(1): 83–86. DOI: 10.1130/G31416.1.
|
[17] |
BOATWRIGHT J, COCCO M. Frictional constraints on crustal faulting [J]. Journal of Geophysical Research, 1996, 101(B6): 13895–13909. DOI: 10.1029/96jb00405.
|
[18] |
PERSSON B N J. Sliding friction: physical principles and applications[M]. Nano Science and Technology. Springer-Verlag, Berlin and Heidelberg, 1998.
|
[19] |
MUSER M H, URBAKH M, ROBBINS M O. Statistical mechanics of static and low-velocity kinetic friction [J]. Advances in Chemical Physics, 2003, 126: 187–272.
|
[20] |
BAUBERGER T, CAROLI C. Solid friction from stick-slip down to pinning and aging [J]. Advances in Physics., 2006, 55(3/4): 279–348. DOI: 10.1080/00018730600732186.
|
[21] |
ZHENG G, RICE J R. Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture [J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1466–1483. DOI: 10.1016/S0040-1951(98)00192-9.
|
[22] |
RICE J R, LAPUSTA N, RANJITH K. Rate and state dependent friction and the stability of sliding between elastically deformable solids [J]. Journal of Mechanics and Physics of Solids, 2001, 49(9): 1865–1898. DOI: 10.1016/S0022-5096(01)00042-4.
|
[23] |
DI TORO G, HIROSE T, NIELSEN S, et al. Natural and experimental evidence of melt lubrication of faults during earthquakes [J]. Science, 2006, 311(5761): 647–649. DOI: 10.1126/science.1121012.
|
[24] |
DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–8. DOI: 10.1038/nature09838.
|
[25] |
GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
|
[26] |
AHARONOV E, SCHOLZ C H. A physics-based rock friction constitutive law: Steady state friction [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
|
[27] |
SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
|
[28] |
CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): 021024. DOI: 10.1029/2020JB021024.
|
[29] |
SELVADURAI P, GLASER S. Asperity generation and its relationship to seismicity on a planar fault: A laboratory simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
|
[30] |
RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J]. Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
|
[31] |
IKARI M J, MARONE C, SAFFER D M, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences, 2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
|
[32] |
CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
|
[33] |
BYERLEE J D. Friction of rocks [J]. Pure and Applied Geophysics, 1978, 116(4/5): 615–626. DOI: 10.1007/BF00876528.
|
[34] |
CHESTER J S, CHESTER F M, KRONENBERG A K. Fracture surface energy of the Punchbowl fault, San Andreas system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
|
[35] |
SIBSON R H. Thickness of the seismic slip zone[J]. Bulletin of the Seismological Society of America. 2003, 93 (3): 1169–1178. DOI: 10.1785/0120020061.
|
[36] |
MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
|
[37] |
ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
|
[38] |
RICHEFEU V, El YOUSSOUFI MS, AZEMA E, et al. Force transmission in dry and wet granular media [J]. Powder Technology, 2009, 190(1/2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
|
[39] |
KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge material composition in laboratory experiments [J]. Geophysical Journal International, 2017, 208(1): 521–528. DOI: 10.1093/gji/ggw409.
|
[40] |
BUDKOV A M, KOCHARYAN G G. Experimental study of different modes of block sliding along interface: part 3: numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
|
[41] |
OSTAPCHUK A A, MOROZOVA K G. On the mechanism of laboratory earthquake nucleation highlighted by acoustic emission [J]. Scientific Reports, 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
|
[42] |
OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic emission reveals multiple slip modes on a frictional fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
|
[43] |
LU K, BRODSY E E, KAVEHPOUR H P. Shear-weakening of the transitional regime for granular flow: the role of compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
|
[44] |
HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
|
[45] |
POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience, 2021, 14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
|
[46] |
FAGERENG A, BEALL A. Is complex fault zone behaviour a reflection of rheological heterogeneity? [J]. Philosophical Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
|
[47] |
RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
|
[48] |
TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J]. Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.
|
[49] |
LANDAU L D, LIFSHITZ E M. Theory of elasticity[M]. Pergamon, New York, 1959.
|
[50] |
ALONSO-MARROQUIN F, VARDOULAKIS I. Micromechanics of shear bands in granular media[C]//Powders and Grains 2005-Proceedings of the 5th International Conference on Micromechanics of Granular Media (2005), The Netherlands: A. A. Balkema, Leiden, 2005: 701–704.
|
[51] |
ABEDI S, RECHENMACHER A L, ORLANDO A D. Vortex formation and dissolution in sheared sand [J]. Granular Matter, 2012, 14(6): 695–705. DOI: 10.1007/s10035-012-0369-5.
|
[52] |
KIM V A, KARIMOV S A. Manifestation of physical mesomechanics at contact interaction [J]. Journal of state technical university of komsomolsky at Amur, Science on nature and technique, 2014, 1(18): 79–85.
|
[53] |
BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquid[M]. 2nd ed. Wiley, New York, 1987.
|
[54] |
CHOW T S. Mesoscopic physics of complex materials[M]. Springer, New York, 2000.
|
[55] |
SIMMONS J H, Mohr R K, MONTROSE C J. Non-newtonian viscous flow in glass[J]. Journal of Applied Physics, 1982, 53(6): 4075–4080. DOI: 10.1063/1.331272.
|
[56] |
SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 105(3), 1988: 313–322. DOI: 10.1016/0022-3093(88)90325-0.
|
[57] |
SIMMONS J H. What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites[J]. Journal of Non-Crystalline Solids, 1988, 239: 1–15. DOI: 10.1016/S0022-3093(98)00741-8.
|
[58] |
GRADY D E. Shock wave properties of brittle solids: 950846 [R]. Sandia National Laboratory, 1995: 9–20.
|
1. | 崔红艳,张子禄,胡静,张荣国,王桐,王勇. 基于TPE-BP神经网络的爆破振速预测模型研究. 矿业研究与开发. 2024(05): 53-58 . ![]() | |
2. | 陈梓薇,王仲琦,曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法. 爆炸与冲击. 2024(05): 132-141 . ![]() | |
3. | 戴增杰,梁昊,王贵,李洪伟,魏正,储亚坤,王多良. 基于3种神经网络算法的露天矿山台阶爆破块度预测. 煤矿爆破. 2024(04): 1-6+11 . ![]() | |
4. | 郭映聪. 基于小波分析基坑钻爆开挖地震效应预测研究. 市政技术. 2023(02): 126-132 . ![]() | |
5. | 张云鹏,葛晓东,武旭,王杰. 爆破地震波入射角度对振动和放大效应的影响. 工程爆破. 2023(01): 122-129 . ![]() | |
6. | 张勇,李旋,尹燕良,李富杰. 基于萤火虫算法优化BP神经网络的爆破振速预测. 人民长江. 2023(05): 231-236 . ![]() | |
7. | 张西良,焦灏恺,李二宝. 基于迁移学习算法的深部爆破振动速度预测. 中国安全科学学报. 2023(06): 64-72 . ![]() | |
8. | 肖师云,冯成良,陈文,刘俞平. 基于BP神经网络的破片聚焦曲线优化. 兵工自动化. 2022(01): 43-47 . ![]() | |
9. | 田海勇,王靖岳,李建刚. 齿轮箱复合故障诊断系统设计. 机械工程与自动化. 2022(03): 135-137+140 . ![]() | |
10. | 范勇,裴勇,杨广栋,冷振东,卢文波. 基于改进PSO-BP神经网络的爆破振动速度峰值预测. 振动与冲击. 2022(16): 194-203+302 . ![]() | |
11. | 张齐,贾文超,莫爵同. BP神经网络模型在深基坑爆破振速上的应用研究. 广东土木与建筑. 2021(02): 80-83 . ![]() | |
12. | 李峰. 台阶爆破逐孔起爆网路的设计与应用. 爆破器材. 2021(02): 58-64 . ![]() | |
13. | 何理,杨仁树,钟东望,李鹏,吴春平,陈江伟. 毫秒延时爆破等效单响药量计算及振速预测. 爆炸与冲击. 2021(09): 132-144 . ![]() | |
14. | 张童康,师芸,童锋,刘丽霞,闫倩倩. 改进GWO-BP算法的概率积分法预计参数求取. 中国矿业. 2021(12): 45-52 . ![]() | |
15. | 方国富,于显浩,邱伟,刘美山,杨招伟,黎绍光. 复杂地形下基于BFO-LSSVM模型爆破振动预测研究. 市政技术. 2021(12): 147-151 . ![]() | |
16. | 胡晓冰,陈志远,魏格平,魏正,王贵,宋家旺. 基于BP神经网络的爆破振动预测系统. 矿业研究与开发. 2020(09): 154-158 . ![]() | |
17. | 赵红梦,姜志侠. PCA-BP算法在地面爆破振动中的应用. 工程爆破. 2020(05): 30-35 . ![]() | |
18. | 冯佩,李俣. 基于人工神经网络和粒子群优化的半导体激光器参数反向设计方法. 中国激光. 2019(07): 9-15 . ![]() | |
19. | 高启栋,卢文波,杨招伟,严鹏,陈明. 水平光面爆破激发地震波的成分及衰减特征. 爆炸与冲击. 2019(08): 170-182 . ![]() | |
20. | 吕伟才,黄晖,池深深,韩必武. 概率积分预计参数的神经网络优化算法. 测绘科学. 2019(09): 35-41 . ![]() | |
21. | 黄德东,王清华,邢亮亮,徐丰,吴斌. Hopkinson拉杆平板挂钩试件结构智能协同优化. 爆炸与冲击. 2019(10): 119-131 . ![]() | |
22. | 吴星煌,朱南海,陈志强,冯冲冲. 基于性能的钢框架-钢板剪力墙塑性优化设计思路. 江西理工大学学报. 2019(05): 22-30 . ![]() | |
23. | 冷智高,李祥龙,程明,宋春辉,陶子豪. BP神经网络在爆破振动中的研究与应用. 有色金属(矿山部分). 2019(06): 9-12 . ![]() | |
24. | 赵明生,张光雄,刘军,李继业,余红兵,刘强,何兴贵. 露天台阶爆破智能化设计软件. 爆破. 2018(02): 72-79 . ![]() | |
25. | 裴成禹. 基于卡尔曼滤波的网球发球最佳击球点预测系统. 现代电子技术. 2018(11): 162-165+170 . ![]() | |
26. | 任少峰,周俊,张修玉,李玉能,邓涛,蒲恒强. 基于BP神经网络模型的爆破对邻近管道振动预测研究. 矿业研究与开发. 2018(09): 104-108 . ![]() | |
27. | 苟倩倩,赵明生,池恩安,何兴贵,黄胜松. 基于PCA-BP神经网络在爆破振动评价要素中的预测及应用. 矿业研究与开发. 2018(12): 97-102 . ![]() |