[1] | YUAN Shuai, TAI Feng, QIAN Xinming, CHENG Donghao. Prediction methods for lower explosion limit of thermal runaway products of lithium-iron phosphate batteries[J]. Explosion And Shock Waves, 2025, 45(2): 021434. doi: 10.11883/bzycj-2023-0452 |
[2] | MA Chenghao, ZHUANG Ziao, SHIN Jonghyeon, XING Bobin, XIA Yong, ZHOU Qing. Data-driven safety prediction of power battery pack under side pole collision[J]. Explosion And Shock Waves, 2025, 45(2): 021441. doi: 10.11883/bzycj-2024-0318 |
[3] | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[4] | JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203 |
[5] | WU Xingxing, ZHANG Lunping, ZOU Haoyang, ZHANG Nu, WANG Haikun, LIU Jianhu. A calculation method for ship structure damage under cabin explosion[J]. Explosion And Shock Waves, 2024, 44(3): 031405. doi: 10.11883/bzycj-2023-0289 |
[6] | NING Ye, HE Meng, QI Chang, CHEN Sheng, YAN Xingqing, YU Jianliang. Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture[J]. Explosion And Shock Waves, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120 |
[7] | DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016 |
[8] | SUN Song, WANG Mingyang, GAO Kanghua, ZHAO Tianhui, GUO Qiang. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure[J]. Explosion And Shock Waves, 2018, 38(2): 359-366. doi: 10.11883/bzycj-2016-0211 |
[9] | Yao Jian, Wang Haiyang, Wang Cuihua, Wang Yongxu, Zhu Xiangdong, Li Bin. Experimental study of cook-off performance of fuel tanks[J]. Explosion And Shock Waves, 2017, 37(4): 779-784. doi: 10.11883/1001-1455(2017)04-0779-06 |
[10] | Du Ming-ran, Wang Xu-guang, Guo Zi-ru, Yan Shi-long. Theoretical studies for calculating the detonation products and properties of explosives[J]. Explosion And Shock Waves, 2015, 35(4): 449-453. doi: 10.11883/1001-1455(2015)04-0449-05 |
[11] | Zhang Zai-chen, Lin Cong-mou, Huang Zhi-bo, Ge Bing-yang, Xu Liang. Prediction of blasting vibration of area near tunnel blasting source[J]. Explosion And Shock Waves, 2014, 34(3): 367-372. doi: 10.11883/1001-1455(2014)03-0367-06 |
[12] | Xiang Mei, Huang Yi-min, Rao Guo-ning, Peng Jin-hua. Cook-off test and numerical simulation for composite charge at different heating rates[J]. Explosion And Shock Waves, 2013, 33(4): 394-400. doi: 10.11883/1001-1455(2013)04-0394-07 |
[13] | Xue Xiao-chun, Yu Yong-gang, Zhang Qi. Experimental study on expansion characteristics of twin combustion-gas jets in liquid-filled chambers[J]. Explosion And Shock Waves, 2013, 33(5): 449-455. doi: 10.11883/1001-1455(2013)05-0449-07 |
[14] | YANG Nian-hua, ZHANG Le. Blastingvibrationwaveformpredictionmethod
basedonsuperpositionprinciple[J]. Explosion And Shock Waves, 2012, 32(1): 84-90. doi: 10.11883/1001-1455(2012)01-0084-07 |
[15] | CHEN Ai-ping, SONG Fei. Anenclosureflashovercriterionbasedonchaostheory[J]. Explosion And Shock Waves, 2010, 30(6): 622-627. doi: 10.11883/1001-1455(2010)06-0622-06 |
[16] | PAN Yu, LI Da-peng, LIU Wei-dong, WANG Zhen-guo. Combustion mode transition in a scramjet engine[J]. Explosion And Shock Waves, 2008, 28(4): 293-297. doi: 10.11883/1001-1455(2008)04-0293-05 |
[17] | FENG Xiao-jun, WANG Xiao-feng, HAN Zhu-long. The study of charging size influence on the response of explosives in slow cook-off test[J]. Explosion And Shock Waves, 2005, 25(3): 285-288. doi: 10.11883/1001-1455(2005)03-0285-04 |