爆轰波波形与药型罩结构匹配对杆式射流成形的影响

陈闯 王晓鸣 李文彬 李伟兵 董晓亮

陈闯, 王晓鸣, 李文彬, 李伟兵, 董晓亮. 爆轰波波形与药型罩结构匹配对杆式射流成形的影响[J]. 爆炸与冲击, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08
引用本文: 陈闯, 王晓鸣, 李文彬, 李伟兵, 董晓亮. 爆轰波波形与药型罩结构匹配对杆式射流成形的影响[J]. 爆炸与冲击, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08
Chen Chuang, Wang Xiao-ming, Li Wen-bin, Li Wei-bing, Dong Xiao-liang. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion And Shock Waves, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08
Citation: Chen Chuang, Wang Xiao-ming, Li Wen-bin, Li Wei-bing, Dong Xiao-liang. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion And Shock Waves, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08

爆轰波波形与药型罩结构匹配对杆式射流成形的影响

doi: 10.11883/1001-1455(2015)06-0812-08
基金项目: 国家自然科学基金项目(11202103)
详细信息
    作者简介:

    陈闯(1987—), 男, 博士研究生, chenchuang517@126.com

  • 中图分类号: O381

Effect of matching of detonation waveform with liner configuration on the rod-like jet formation

  • 摘要: 为提高杆式射流对钢靶的侵彻能力,设计了一种偏心亚半球药型罩,通过爆轰波碰撞理论推导出药型罩压垮速度,并结合改进的PER理论建立了杆式射流成形的模型。分析了药型罩结构参数对爆轰波碰撞压力的影响规律,获得了等质量变壁厚药型罩射流质量及速度分布的变化规律。结果表明:马赫反射压力随偏心距的增大而增大,随外壁曲率半径的增大而减小,而正规斜反射压力与马赫反射压力变化规律相反,且马赫反射压力受药型罩结构影响较大;通过对比不同方案,罩顶与罩口部厚、中间薄形状药型罩形成的射流质量提高了29.5%,头部速度提高了21.3%,且速度梯度最大,相同炸高条件下侵彻深度提高了约2倍装药直径。针对优化结构进行了数值模拟和实验验证,通过对爆轰波波形与药型罩结构合理的匹配设计,使形成的杆式射流成形及侵彻性能得到显著提升。
  • 图  1  成形装药结构

    Figure  1.  Configuration of shaped charge

    图  2  爆轰波传播过程

    Figure  2.  Propagation process of detonation wave

    图  3  马赫反射压力、正规斜反射压力和射流头部速度随药型罩结构参数的变化曲线

    Figure  3.  Curves of Mach reflection pressure, regular oblique reflection pressure and tip velocity of jet vs. liner configuration parameters

    图  4  射流质量和射流速度分布曲线

    Figure  4.  Curves of jet mass and jet velocity distribution

    图  5  变壁厚药型罩

    Figure  5.  Variable thickness liners

    图  6  不同方案射流质量随药型罩位置的变化曲线和射流速度分布曲线

    Figure  6.  Curves of jet mass vs. liner position and jet velocity distribution for different schemes

    图  7  成形装药实物图

    Figure  7.  Photos of shaped charge

    图  8  侵彻通道及孔形

    Figure  8.  Penetration channel and hole shape

    表  1  杆式射流成形计算结果

    Table  1.   Calculation results of rod-like jet formation

    方案成形形态vtip/(m·s-1)vtail/(m·s-1)
    理论数值模拟理论数值模拟
    A6 9896 778984849
    B7 4897 243672556
    C6 1735 9671 2291 138
    下载: 导出CSV

    表  2  数值模拟与实验侵彻结果

    Table  2.   Penetration results of simulation and experiment

    方案方法靶板1靶板2靶板3H/mm
    D1/mmD2/mmD1/mmD2/mmD1/mm
    A实验522929370
    数值模拟533131386
    B实验4329292726508
    数值模拟4532322928517
    C实验482727232
    数值模拟503030258
    下载: 导出CSV
  • [1] 谭多望, 孙承纬.成型装药研究新进展[J].爆炸与冲击, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07

    Tan Duo-wang, Sun Cheng-wei. Progress in studies on shaped charge[J]. Explosion and Shock Waves, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07
    [2] Church P, Cornish R, Cullis I, et al. Experimental and simulation studies of slow stretching jets[C]∥Reinecke W G. Proceedings of the 18th International Symposium on Ballistics. Lancaster: Technomic Publishing Co. Inc, 1999: 474-483.
    [3] Fong R. Warhead technology advancement[C]∥Armaments for the Army Transformation Conference. New Jersey: U. S. Army Armament Research, Development and Engineering Center, 2000: 1-26.
    [4] Blache A, Weimann K. Shaped charge with jetting projectile for extended targets[C]∥Niekerk C V. Proceedings of the 17th International Symposium on Ballistics. Midrand, South Africa: The South African Ballistics Organisation, 1998: 207-215.
    [5] Funston R J, Mattsson K V, Ouye N N. K-charge—A multipurpose shaped charge warhead[P]. USA: US6393991 B1, 2002-05-28.
    [6] 黄正祥, 张先锋, 陈惠武.起爆方式对聚能杆式侵彻体成型的影响[J].兵工学报, 2004, 25(3): 289-291. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200403007.htm

    Huang Zheng-xiang, Zhang Xian-feng, Chen Hui-wu. Influence of modes of detonation on the mechanism of jetting projectile charge[J]. Acta Armamentarii, 2004, 25(3): 289-291. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200403007.htm
    [7] 吴晗玲, 段卓平, 汪永庆.杆式射流形成的数值模拟研究[J].爆炸与冲击, 2006, 26(4): 328-332. doi: 10.11883/1001-1455(2006)04-0328-05

    Wu Han-ling, Duan Zhuo-ping, Wang Yong-qing. Simulation investigation of rod-like jets[J]. Explosion and Shock Waves, 2006, 26(4): 328-332. doi: 10.11883/1001-1455(2006)04-0328-05
    [8] 王志军, 伊建亚, 张洪成, 等.紧凑型聚能装药结构对侵彻体成型的影响[J].兵器材料科学与工程, 2014, 37(1): 53-56. http://www.cqvip.com/QK/95120X/20141/48450436.html

    Wang Zhi-jun, Yi Jian-ya, Zhang Hong-cheng, et al. Influence of compact shaped charge on penetrator formation[J]. Ordnance Material Science and Engineering, 2014, 37(1): 53-56. http://www.cqvip.com/QK/95120X/20141/48450436.html
    [9] Muller F. Mach-reflection of detonation waves in condensed high explosives[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(4): 115-118. doi: 10.1002/prep.19780030403
    [10] 王继海.二维非定常流和激波[M].北京: 科学出版社, 1994: 38-146.
    [11] 张洋溢, 龙源, 何洋扬, 等.爆轰波斜冲击金属介质理论在聚能装药药型罩设计中的应用研究[J].振动与冲击, 2011, 30(7): 214-217. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201107043.htm

    Zhang Yang-yi, Long Yuan, He Yang-yang, et al. Application of oblique impact theory of detonation waves at the explosive-metal interface in design of shaped charge[J]. Journal of Vibration and Shock, 2011, 30(7): 214-217. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201107043.htm
    [12] 王树魁, 贝静芬.成型装药原理及其应用[M].北京: 兵器工业出版社, 1992: 51-69.
    [13] Livermore Software Technology Corporation. LS-DYNA keyword user's manual[Z]. California: Livermore Software Technology Corporation, 2003.
    [14] Li Wei-bing, Wang Xiao-ming, Li Wen-bin. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator[J]. International Journal of Impact Engineering, 2010, 37(4): 414-424. doi: 10.1016/j.ijimpeng.2009.08.008
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2992
  • HTML全文浏览量:  341
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-17
  • 修回日期:  2014-08-26
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回