• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
最新录用栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
摘要:
摘 要:在超高性能混凝土(Ultra-High Performance Concrete, UHPC)的数值模拟研究中,合理的确定其本构模型参数是提高计算精度和设计可靠度的基础。本文基于超高性能混凝土单轴压缩试验、SHPB试验和已有的三轴围压等试验确定了超高性能混凝土HJC本构模型参数。利用LS_DYNA模拟单向板爆炸试验,通过与试验中单向板的损伤程度和最大挠度进行对比,验证了已确定参数的有效性。为了进一步了解超高性能混凝土构件抗爆机理,采用已确定参数对单向板爆炸工况进行数值模拟研究,分析配筋和尺寸变化对爆炸结果的影响。结果表明,在爆炸过程中,提高纵筋配筋率可以减小单向板的跨中最大挠度,适当加密箍筋可以减小单向板侧面的斜裂缝长度。超高性能混凝土单向板具有明显的尺寸效应,其中厚度和长度变化对爆炸结果的影响最突出。
摘要:
随着航空运输的快速发展,航空油料的安全使用性极为重要,不同舱室结构内航空油料的燃爆参数存在差异。为了解和掌握不同结构舱室内航空油料的燃爆危害性,运用CFD对不同结构航空油料舱室内航空油料蒸汽燃爆问题进行数值模拟研究,通过燃爆过程中燃爆超压-时间、燃爆时间、燃爆温度等参数的变化来分析舱室不同结构对航空油料燃爆影响。结果表明:在密闭航空油料舱中发生航空油料蒸汽预混爆燃现象时,航空油料舱各处压力变化较为均匀,火焰面呈球形扩散,燃烧反应主要发生在火焰面上,当火焰面面积增大或火焰传播速度加快时,舱室压力上升速度增加;本次数值模拟条件下,无隔板密闭舱室与含不完全分割隔板密闭舱室内航空油料最大燃爆压力分别为0.76MPa、0.74MPa,即舱室内部存在的不完全分割隔板等特殊结构对航空油料燃爆时所产生的最大压力无显著影响;隔板等特殊结构的存在使得舱室内部产生气流漩涡,增大燃料消耗速率,导致火焰面传播速度及压力上升速率增大,舱室内各处燃料的质量分数由火焰面决定。
摘要:
为了探究多因素耦合作用对于甲烷爆炸特性的影响,采用1.2 L圆柱形爆炸装置,结合自主设计和搭建的可燃气体爆炸试验平台,从最大爆炸压力的角度分析了不同的当量比φ (0.6~1.4)、初始温度T0 (25 ℃~200 ℃)和初始压力p0 (0.1 MPa~0.5 MPa)耦合条件对于甲烷爆炸特性的影响规律。在此基础上,基于实验获得的最大爆炸压力数据,利用1stOpt构建了甲烷最大爆炸压力与当量比、初始温度和初始压力的非线性回归预测模型。研究结果表明:在初始温度和初始压力耦合作用下,初始压力越高,初始温度对最大爆炸压力的影响越大;初始温度越高,初始压力对最大爆炸压力的影响越小。在初始压力和当量比耦合作用下,在研究的实验条件范围内,当φ<0.9或φ>1.2时,初始压力越高,最大爆炸压力的变化越显著。在初始温度和当量比耦合作用下,在研究的实验条件范围内,当φ>1.15时,初始温度越高,最大爆炸压力的变化越显著。此外,通过将基于1stOpt预测模型的预测结果与实验测试结果相比较,发现二者之间的相对误差均小于10%,表明该预测模型具有较高的精度和适应性。
摘要:
为进一步提高轻气炮发射能力,提出了采用梯度气体替代单一氢/氦气作为驱动气体的方法,通过对等直径发射器进行分析,建立了弹丸在梯度气体驱动下的加速运动模型,对比了氖-氦梯度气体驱动与单一氦气驱动的发射能力差异,分析了梯度气体参数对发射性能的影响。结果表明,与单一氦气驱动相比,氖-氦梯度气体驱动能够提升0.4~1.4 km/s的发射速度或降低0.2~0.9 GPa的发射过载;高密度气体密度和活塞运动速度对发射速度和过载影响最大,其次为气体压力和多方气体指数;梯度气体中,高密度气体应选择多方气体指数和气体密度较高的气体(如氖气、氩气等);梯度气体界面位置(高密度气
摘要:
战斗部复杂的末弹道参数会影响近地爆炸冲击波周向传播规律及对目标的毁伤程度,研究柱形装药近地爆炸冲击波传播规律对精确评估毁伤效能具有重要的工程意义。基于AUTODYN-3D软件对不同末弹道参数的柱形装药近地爆炸进行了仿真计算,通过2个方向的分别建模获得了柱形装药近地爆炸下前、后、侧三个方向冲击波压强数据;研究了战斗部落速、落角、爆心高度和装药长径比4个参数对柱形装药近地爆炸冲击波传播的影响规律,分析了冲击波的演化过程、峰值压强和马赫杆高度。研究结果表明:静爆时爆心高度是影响冲击波马赫杆高度的主要因素,落角与装药长径是影响马赫杆高度方向差异的主要因素;动爆时能够增大周向马赫杆高度,前方最为显著;另外随动爆速度的增大,前向冲击波峰值线性增大。正交优化的结果显示4种变量中动爆速度对柱形装药前方峰值压强极差最大;落角对后方峰值压强极差最大;爆心高度对马赫杆高度影响最大。通过研究柱形装药近地动爆冲击波周向传播规律,结果表明合理的调整装药参数和近地爆炸姿态对实现某方向的最大毁伤或减小超压伤害有借鉴意义。
摘要:
利用传统分离式霍普金森压杆(SHPB)实验技术来实现试件在较低应变率下的大变形时,往往需要使用超长的压杆系统,杆件的加工和实验空间限制了该技术的推广应用。本文提出一种直撞式霍普金森压杆二次加载实验技术,利用透射杆中的应力波在其末端的准刚性壁反射,从而实现对试件的二次加载;采用二点波分离方法实现了重叠应力波的有效分离和计算,在总长4m的压杆系统中实现了1.2ms的长历时加载,并且可以准确获得试件的应力应变关系。建立了直撞式霍普金森压杆二次加载有限元模型,数值仿真结果表明该实验技术能有效地实现试件的二次加载,与超长SHPB系统获得的仿真结果相比较,两者的试件应力应变关系完全一致。利用该技术对铝合金材料进行动态压缩实验,实现了其在102s-1量级应变率下的大变形动态力学性能测试。
摘要:
摘要:
为研究复杂地况下含特征层理煤岩的动态力学行为,采用Φ50 mm分离式霍普金森压杆(SHPB)试验系统,对含层理 (0°、30°、45°、60°、90°)煤岩进行动态三轴循环冲击试验研究,并结合3D轮廓扫描仪量化其断裂界面,分析层理效应和围压效应对煤岩动态力学特性及其损伤破坏规律的影响。研究表明: 围压的施加使煤岩应力应变曲线出现弹性回效现象;抗压强度和失效应变较无围压状态增加3.9~4.2和2.59~3.05倍。随着层理角度的增加,煤岩的动态抗压强度、弹性模量和能量透射率呈现先减后增的U型分布,在45°达到最小;能量吸收率、断面粗糙度呈现先增后减的∩型分布,损伤变量呈现N型分布,在45°达到最大;煤岩的损伤破坏特征随层理角度可概括为张拉破坏(0°)-剪切破坏(30°、45°、60°)-劈裂破坏(90°)的演变过程,相关研究所得特征规律可为实际工况复杂环境下煤层气资源安全高效开采提供基础理论支持。
摘要:
在恐怖袭击和武器打击作用下,建筑结构外框架柱可能遭受近场近地爆炸作用。为了快速评估该工况下建筑柱的动力响应和破坏模式,本文通过数值仿真方法,探究了近场近地爆炸工况下冲击波在建筑柱迎爆面的分布规律,并提供了该工况下的爆炸荷载简化模型。为此,首先利用已有实验数据验证数值模型,并建立典型近地近场爆炸工况的数值模型,然后研究比例爆距和比例爆高对建筑柱冲击波特征参数的影响,最后拟合出柱迎爆面反射冲量和正相超压持续时间的计算公式,将柱迎爆面各点爆炸荷载转化为等效三角形荷载模型,为工程实践中建筑柱遭受近地近场爆炸作用下的抗爆设计提供荷载输入。研究结果表明当比例爆高小于0.3 m/kg1/3,比例爆距在0.4 m/kg1/3-0.6 m/kg1/3范围时,最大反射冲量沿柱高可简化为三折线分布;当比例爆距在0.6 m/kg1/3-1.4 m/kg1/3范围时,最大反射冲量沿柱高可近似简化为双折线分布。在同一比例爆距和比例爆高工况下,随着炸药当量的增加,柱迎爆面相同比例高度处反射超压峰值保持不变而反射冲量正比于当量的立方根。
摘要:
利用自主设计的5 m长矩形管道对30%浓度氢气-空气预混气体在不同破膜压力(Pv)条件下进行了一系列燃爆实验,重点研究了Pv对管道内外火焰传播行为及爆炸超压的影响。实验结果表明,管道内的火焰传播行为受Pv显著影响。在靠近泄爆口的压力传感器所监测的压力-时间曲线上可以观察到三个压力峰值(Pb、Pout、Pext),分别对应于铝膜破裂、燃烧混合物泄放以及外部爆炸,大多数情况下Pb为最大压力峰值。管道内部最大超压随着Pv增大而增大,但最大内部超压出现的位置受Pv的影响。管道外部火焰传播行为与Pv有关,但不同Pv下外部火焰的最大长度无明显差异。最大外部超压与Pv之间呈现非单调变化规律。
摘要:
为了确定战斗部装药在快速烤燃条件下能稳定燃烧的临界泄压面积,本文基于质量守恒定律和气体状态方程建立了战斗部壳体内考虑炸药初始温度和排气孔排气的气体压强增长模型。以B炸药(Composition B explosive)圆柱战斗部为研究对象,研究了炸药意外点火后能稳定燃烧的"A" _"V0" ?"S" _"B" (临界泄压面积/炸药外表面积)确定方法,并与实验值进行了比较。结果表明本文建立的模型能够很好的预测B炸药战斗部的临界泄压面积。研究了战斗部炸药装药表面积、炸药初始温度、空气体积占比和炸药燃速对"A" _"V0" ?"S" _"B" 的影响,并将不同温度的模型预测值与实验值进行了比较。结果表明,炸药装药表面积对"A" _"V0" ?"S" _"B" 基本没有影响;"A" _"V0" ?"S" _"B" 与温度和炸药燃速成正相关,与空气体积占比成负相关;不同温度的模型预测值"A" _"V0" ?"S" _"B" 与实验值吻合较好。本研究可为弹药热刺激缓释结构的设计提供理论依据和数据参考。
摘要:
基于高速摄影技术,开展了多工况下弹丸倾斜入水实验,并利用自编程序,对实验图像进行像素点捕捉及数据提取与处理。通过分析弹丸倾斜入水空泡形成、发展及溃灭过程,得到了尾拍过程中弹丸的空泡演化特性。此外,通过对比分析不同入水初速下空泡尺寸及弹丸速度与加速度的变化规律,总结出入水初速对弹丸空泡演化特性及入水运动特性的影响规律。研究结果表明:弹丸发生尾拍后,部分弹尾穿透原始空泡发生沾湿,同时自弹尾向后产生了新的尾拍空泡,尾拍空泡与原始空泡间贴合紧密;尾拍结束后,尾拍空泡在水中的位置基本不变,最终从弹丸原始空泡表面拉脱溃灭,而相同深度的原始空泡在尾拍产生射流影响下加速溃灭;随着入水初速的增加,尾拍空泡的尺寸及原始空泡的长度逐渐增大,尾拍过程中弹尾最大沾湿面积也逐渐增大;随着尾拍次数的增加,弹丸在每次尾拍过程中速度衰减幅值增大,同时弹丸损耗的能量逐渐增多,弹丸存速能力下降。
摘要:
本文采用数字图像相关分析方法(DIC)与CT扫描实验方法,分析了孔内分段装药爆炸全场应变传播规律,建立了爆后“岩石—爆炸裂隙”的三维重构模型,描述了爆炸裂纹位置与形态的空间分布情况,得到岩石材料爆炸裂隙的分形维数与损伤度,研究结果表明:分段装药改变了连续装药对介质的全场应变形态,由一次应变改变为两次应变,在满足第一段炸药对介质的破坏作用下,同时加大了第二段炸药对介质的作用效应;上分段装药占比0.4时,下分段介质受爆炸作用应变峰值更大,更好满足工程实践中下半段岩体对爆炸能量的需求;相同装药系数下,连续装药结构爆炸裂纹没有贯穿试件整体,炮孔封堵段的爆炸裂纹较少,分段装药结构下,由于提高了炸药的位置,使得上部分岩体能够更好的利用炸药爆炸的能量破碎岩石;分段装药岩石整体损伤度较连续装药提高了23.5%,其中上分段岩石损伤差异性较大,分段装药上分段损伤度比连续装药提高46.4%。
摘要:
为研究常规武器二次爆炸作用下土中浅埋拱结构的破坏规律,对土中浅埋钢筋混凝土直墙拱结构进行了爆炸试验和数值模拟计算。试验对结构模型缩比,共设置三组六个炮次工况。同时,利用LS-DYNA对该三组工况进行数值模拟计算。通过对比土中测点压力、结构测点速度、结构挠度等数据,发现模拟结果与试验结果基本一致。将数值模拟结果与试验对比后,拓展了二次爆炸的数值模拟工况。比例爆距设置在0.6 m/kg3-0.4 m/kg3,以保证结构以整体破坏为主。综合结构毁伤宏观描述和结构最大挠跨比,对整体作用下结构的毁伤等级进行划分。通过讨论结构的初始毁伤及不同的爆炸顺序时钢筋混凝土直墙拱结构的破坏规律,得出了以下结论:结构受爆炸作用发生开裂、弯曲等破坏时,部分混凝土因开裂或进入塑性而退出工作,从而导致结构的刚度发生改变;结构最终毁伤程度受打击顺序影响,初次爆炸对结构最终损伤影响比重较大。
摘要:
安全距离是危险品仓库建设和研究中重点关注的问题之一。为减小危险品仓库的安全距离,结合国内外现行规范和危险品仓库建设现状,针对一种由浅埋式库房主体、顶部堆土和钢筋混凝土分配板组成的新型危险品仓库形式开展了3组缩尺模型野外爆炸试验,记录了各组试验的爆炸过程,统计了冲击波超压峰值和爆炸破片的飞散范围,给出了爆炸冲击波的安全距离,分析了分配板、库房强度等因素对冲击波
摘要:
陶瓷球作为增强相加入到聚氨酯基体中,能够提高复合材料的抗冲击性能。为研究毫米级陶瓷球对聚氨酯复合材料抗冲击性能的影响,基于LS-DYNA的ALE算法对直径为4.5mm的Al2O3陶瓷球增强聚氨酯基复合材料进行小当量爆炸载荷下的动态响应数值模拟,并探究爆炸当量和陶瓷球尺寸对复合材料性能的影响。结果表明,随着爆炸当量的提高,复合材料挠度/速度增长较为稳定且聚氨酯的吸能效率不断提升;在相同面密度下,陶瓷球尺寸越小,复合材料板受冲击载荷的变化敏感度越低,总体的加速度波动范围也变大。
摘要:
循环冲击载荷作用页岩形成复杂缝网是燃爆压裂页岩储层的重要科学难题。基于?50 mm霍普金森杆实验系统开展页岩循环冲击实验,研究不同循环冲击载荷作用下页岩动力学响应及损伤演化特征,同时揭示控制入射总能量不变条件下,不同气压梯度循环冲击页岩能量演化规律,主要结论如下:随冲击气压升高,试样破裂所需的冲击次数呈线性降低,峰值应力随循环冲击次数的增加先升高后降低,极限应变先降低后升高,试样循环冲击表现出先压密后损伤的力学机制;基于Weibull分布的统计损伤模型表明,增大循环冲击气压,试样损伤破坏形式由缓慢劣化逐渐转变为骤然破坏;入射总能量恒定情况下,通过控制循环入射能量梯度能够产生不同的损伤效果,降压冲击和升压冲击的能量吸收比均大于恒压冲击,且气压梯度的绝对值与能量吸收比呈现正相关性。研究可对多级燃爆压裂过程中页岩储层力学特性的演化及燃爆压裂的工艺设计提供理论支撑。
摘要:
超高压水射流自驱旋转型喷头是目前广泛应用于船壁除锈的一种装置,其布局方式直接影响船壁除锈的效率和质量,目前喷头布局多依赖工程经验,缺少准确地理论分析和优化技术支持。针对水射流自驱旋转型喷头的布局优化问题,在传统遗传算法(GA)的基础上,提出一种基于“锦标赛选择”的精英策略遗传算法(ESGA),该算法通过采用种群进化过程中精英个体直接保留到下一代的进化策略,从而有效提高算法的全局收敛能力和算法的鲁棒性。结合旋转喷头扫掠冲击性能和轨迹特征,以喷头移动路径垂直打击面上的能量分布均匀度为衡量标准,建立超高压水射流自驱旋转型喷头的螺旋扫掠冲击离散化时间优化模型,并分别利用两种遗传算法对其进行优化改进。对“一”字型水射流自驱旋转型喷头的布局优化研究发现,经ESGA算法优化的旋转喷头其扫掠冲击能量分布均匀度较原喷头布局提升47.2%,其收敛精度也高于GA算法。经对ESGA算法优化后的喷头实验验证发现,ESGA优化方案较原设计方案除锈效率提高42%。改进的ESGA优化算法可行性强,能够在收敛迭代次数较少的情况下得到水动力性能更好的喷头布局方案,为旋转型喷头布局优化设计提供了理论依据和应用支持。
摘要:
摘要:本文借鉴局域共振材料的工作机制,通过在混凝土基体中嵌入滤波单元,设计出具有应力波衰减特性的滤波混凝土。通过将滤波混凝土结构简化为质量弹簧力学系统来分析滤波混凝土对应力波的衰减机制。采用数值模拟的方法,对比研究了冲击荷载作用下普通混凝土模型和滤波混凝土模型中应力波的传播特性与层裂破坏模式。通过参数分析,研究了滤波单元的材料与几何属性对其储能效果的影响。研究结果表明:滤波单元有效地降低了混凝土基体中应力波的传播速度与应力峰值。滤波单元的储能机制有效降低了混凝土基体中的能量。金属球的质量越大,滤波单元的储能效果越好,但弹性层的弹性模量和厚度需要通过适当分析进行设计以实现滤波单元的储能最大化。滤波混凝土基体的局部损伤耗散了荷载中的大量能量,有效降低了结构自由面附近的破坏程度。
摘要:
为研究攻角对不同厚度芳纶层合板抗平头弹侵彻性能的影响,构建了三维有限元计算模型,首先通过对比实验结果验证了其可靠性,然后基于该数值模型,进一步计算了0° ~ 30°攻角范围内,4 mm、8 mm和16 mm靶板的弹道响应,从子弹剩余速度、靶板能量吸收率、极限弹道速度与穿孔能量阈值四个方面,综合评估了芳纶层合板的抗侵彻性能。结果表明:攻角的影响与靶板厚度及子弹入射速度有关,随着攻角的增加,靶板的极限速度和穿孔能量阈值均有所降低,降低的程度随厚度的增加而减小;入射速度接近芳纶层合板弹道极限速度时,子弹剩余速度随着攻角增大而增大,但速度远高于弹道极限速度时,子弹剩余速度随着攻角增大而减小;攻角对芳纶层合板弹道性能的影响机理随靶板的破坏模式不同而改变。
摘要:
为改善杀伤战斗部破片轴向飞散一致性,提高战斗部轴向杀伤威力,提出使用波形控制器控制破片飞散方向。基于爆轰波在波形控制器界面发生反射的规律以及Shapiro公式设计了波形控制器形状,使用LS-DYNA有限元软件和ALE算法对破片的飞散过程进行数值计算,结合战斗部原理样机静爆试验,验证了使用波形控制器改善破片飞散特性方法的合理性。对比了有无波形控制器时破片飞散过程的差异,对无波形控制器以及波形控制器材料分别为尼龙、聚氨酯和PTFE时杀伤战斗部的破片飞散速度和破片飞散角规律进行了分析总结。结果表明:波形控制器可以减小战斗部中心和两端位置的破片飞散速度大小差异,使中心到两端位置的破片飞散方向角变化均匀,破片在轴向分布更加均匀;不同材料的波形控制器对破片飞散特性影响不同,波形控制器的使用减小了破片飞散角,增大了破片分布密度,改善了破片飞散一致性。破片飞散角数值计算值与试验计算值误差在6.53%之内,与无波形控制器的杀伤战斗部原理样机相比,含波形控制器且材料为尼龙、聚氨酯和PTFE的战斗部原理样机破片飞散角分别减小40.00%、 44.00%和46.67%。
摘要:
在炸药爆轰驱动含间隙双层钢飞片情况下,两层钢飞片间的间隙会影响外层飞片的首次、二次入射波波形及强度,进而影响外层飞片自由面速度等。为了更好地认识爆轰加载条件下金属飞片的运动特征,需要深入研究间隙对该动力学过程影响的规律性。首先,开展了爆轰驱动含初始间隙双层钢飞片的简化建模及数值模拟,通过模拟与实验结果的对比,验证了简化建模的合理性。之后,对该模型的加载动力学过程进行了深入分析,给出了首次、二次加载的来源。最后,开展了不同间隙厚度对该动力学过程影响的模拟分析研究。自由面速度结果表明,随着间隙厚度由0.1 mm增加至1 mm以上,外层飞片自由面的首次起跳速度峰值先逐渐降低后基本保持恒定、二次起跳速度峰值由逐渐增加至基本不变。动力学分析结果表明,可将不同间隙大小影响分为两个阶段,其分界判据是在爆轰加载后内层金属飞片是否能够在间隙部位发展为脱体层裂片:在间隙较小的情况下内层飞片在间隙一侧无法发展为层裂片,在此阶段内随着间隙厚度增加外层飞片的首次加载峰值压力降低、二次加载峰值压力增加;在间隙较大情况下内层飞片在间隙一侧可以形成厚度不变、速度稳定的层裂片,在此阶段内随着间隙厚度增加外层飞片的首次加载与二次加载的峰值压力均基本不变,但首次-二次加载时间间隔降低。本文认识对爆轰驱动含间隙飞片的自由面速度曲线解读具有指导意义,从而能够更好地认识工程实验中由间隙造成的一些非预期物理现象。
摘要:
船体水下近距非接触爆炸产生的破口计算过程复杂,涉及到船体板架、武器装药、爆距方位等诸多因素,工程实践中通常应用经验公式求解。基于舰船遭受“定向型”战斗部攻击、毁伤面近似垂直于毁伤轴、爆炸过程瞬时发生满足近似“能量守恒”基本条件,根据爆炸冲击波初始动能与爆炸作用区域结构塑性变形能等量传递的假设,给出了计算方法。考虑了附着加强筋的船体壳板等效厚度对抵御冲击波毁伤的影响,运用爆炸冲击波作用下船体壳板产生的极限应变超过板材动态极限应变导致壳板开裂这一基本原理,设计了“两步迭代法”计算流程,给出了一种简捷易用的迭代计算表格。针对4种典型装药当量冲
摘要:
为了控制并预防原油的储存及输运过程中挥发气体造成的安全风险,在20L球形爆炸容器内开展了由原油中挥发轻烃CH4、C3H8、C2H4构成的三元可燃混合气体的爆炸极限实验,提出并验证了基于Le Chatelier定律及Chemkin中一维层流预混火焰模型预测三元可燃混合气体爆炸极限的方法。结果表明,三元可燃混合气体爆炸极限始终位于三种纯组分的爆炸极限内,随着某一纯组分增加呈现出接近其爆炸极限的趋势。三种纯组分对爆炸上限(UEL)的影响要明显于爆炸下限(LEL),其中C2H4对爆炸上限影响尤为明显。两种预测方法均与实验规律性一致。Le Chatelier定律预测混合气体爆炸下限较准确,但爆炸上限随着C2H4的增加预测偏差增大,修正后偏差明显减小;Chemkin预测爆炸下限虽存在一定偏差,但在实验偏差的允许范围内,故可作为一种预测三元可燃混合气体爆炸下限的新方法。
摘要:
为描述主动围压作用下冻结砂土的动态力学特性,通过在朱-王-唐模型的非线性体上串联塑性体,建立了能够考虑围压效应的冻结砂土动态损伤本构模型;分析了损伤参数对应力-应变曲线特征、屈服点、峰值应力和峰值应变的影响规律,基于冻结砂土动力学试验数据确定了模型参数;通过将模型和试验数据进行对比,并对不同试验条件下模型的预测误差进行分析,验证了模型的适用性和准确性。结果表明,损伤参数对应力-应变曲线弹性阶段和屈服点无明显影响,而对塑性阶段和破坏阶段的影响较为显著,本构模型预测的应力-应变曲线与试验结果具有较好的一致性。模型能够预测围压引起冻结砂土塑性阶段占比大和屈服点明显的特征,且能够描述围压对冻结砂土动态强度的增强效应;不同负温和主动围压条件下,模型对峰值应力和屈服强度的预测效果优于峰值应变和屈服应变。
水中金属丝电爆炸动力学过程的零维模型
薛创
当前状态:
PDF(70)
摘要:
金属丝电爆炸包含丰富的物理内容,近年来国内的实验和理论研究取得了重要进展,理解该过程有助于完善Z箍缩及磁加载等离子体动力学过程的物理建模,校验物性参数。在自相似运动假设条件下,发展了冷启动计算的水中电爆炸丝零维动力学模型。从一维磁流体模型出发,推导了描述丝等离子体膨胀的零维动能方程和内能方程,采用实际气体状态方程和修正的李-莫尔电导率参数作为封闭条件,根据质量守恒及水中激波雨贡纽关系式获得了丝等离子体的边界条件。应用于水中铜丝电爆炸动力学过程和能量转化分析,结果表明:该零维模型的物理假设合理,在一定范围内改变丝直径等参数可产生不同的放电模式,与一维模型及实验结果符合较好,能够为同类实验的优化设计和数据分析提供参考。
摘要:
为研究低熔点金属锡遇水爆炸机理及能量转化过程,搭建了一套由高频熔融炉、高速摄像机、信号采集仪等组成的可视化实验平台,监测锡与水的质量比为 5、10、15、20 时熔融锡液与水接触反应过程,并选取中高熔点金属铝进行同工况下的对比实验。同时,结合能量守恒定律、爆炸冲击理论建立数学计算模型,用于定量分析爆炸冲击波能量。研究结果表明:质量比为 5 时熔融锡液与水反应触发两次蒸汽爆炸;对比同工况下的熔融铝液遇水爆炸实验得到,爆炸时反应剧烈程度和持续时间分别与金属碎化程度、金属热扩散率有关。此外,高温熔融锡液遇水爆炸过程中约有 0.45%~10.91%的热能转化为冲击波能量。随着质量比的增加,冲击波能量转化率呈现先增后减的变化趋势;当质量比为 10 时,冲击波能量转化率最大。基于锡、铝遇水爆炸实验所得冲击波压力曲线得到,当质量比小于 12.69时,锡液遇水爆炸实验所得冲击波能量转化率高于铝液遇水爆炸实验所得冲击波能量转化率。
摘要:
高聚物材料具有成型快和膨胀性能好的特点,其与碎石、钢筋的复合结构应用于地基处理和城市道路脱空除险加固中具有明显优势。本文设计并制作了高聚物碎石板和钢筋高聚物板,开展了接触爆炸冲击下的试验研究,通过毁伤尺寸和所测冲击波数据研究两种板的毁伤特性。基于ANSYS/AUTODYN非线性显式有限元程序,建立了试验中毁伤更为严重的钢筋高聚物板的接触爆炸全耦合模型,并通过与试验结果的对比,验证了所建耦合模型的准确性和适用性。参数化分析了钢筋高聚物板对炸药量和板厚的敏感性,并利用多参数非线性回归分析方法,提出钢筋高聚物板迎爆面和背爆面破坏直径的预测公式。结果表明:接触爆炸作用下,高聚物碎石板的毁伤模式以接触部位的局部震塌冲切破坏为主,除此之还有一些毁伤裂纹;钢筋高聚物板的破坏模式主要是迎爆面爆坑毁伤、背爆面剥落损伤和中心冲切贯穿破坏;高聚物碎石板和钢筋高聚物板对爆炸冲击波都具有良好的衰减作用,表明其具有应用到抗爆炸冲击防护领域的潜能。
摘要:
为研究药型罩对聚能射孔弹侵彻页岩储层的射孔和损伤致裂效果的影响机理,建立了“射孔弹-空气-页岩”三维模型,设置药型罩的锥角分别为50°、60°、70°、80°,壁厚分别为0.5mm、1.0mm、1.5mm,材料分别为铜、钢、钛、钨。利用ANSYS/LS-DYNA软件进行数值计算,分别从射流速度与形态、页岩射孔效果及页岩孔裂隙形成规律特征等进行系统性分析。研究结果表明:在射孔弹结构中随着药型罩锥角的减小,射流速度增大、杵体速度减小、侵彻深度增大同时开孔孔径减小。在一定范围内适当减小药型罩的壁厚,可以增大射流速度、减小杵体质量、增加侵彻深度和开孔倾斜度。药型罩材料对射流速度、杵体结构和页岩射孔效果均有显著影响,其中钨药型罩射孔弹的侵彻深度最大但开孔孔径最小、钛药型罩射孔弹的侵彻深度最小但开孔倾斜度最大、铜比钢药型罩射孔弹的侵彻深度略大但开孔孔径略小。通过研究不同对照组的页岩孔裂隙形成规律特征发现,页岩孔裂隙发育主要发生在杵体对页岩的再扩孔阶段,减小射流初始扩孔孔径、提高杵体直径、提高杵体速度可以促进页岩孔裂隙发育程度。
摘要:
采用泡沫弹冲击加载实验对梯度金属泡沫夹芯梁结构开展了不同冲击强度下的动态响应和失效研究,分析了由三种不同密度泡沫铝组成的等面密度的五种不同梯度的夹芯结构在夹支边界条件下的抗冲击性能,结合相应的三点弯曲实验,研究梯度效应对夹芯结构抗冲击性能的影响。研究表明:密度梯度对结构失效过程和失效模式有着明显的影响,且夹芯梁结构的初始失效模式对结构整体响应和主要的能量吸收机制起着主导作用。均质及负梯度夹芯结构初始失效模式为整体弯曲变形,其他梯度形式的芯层随着冲击强度的变化均会出现不同程度的局部芯层压缩;当冲击强度较低时,梯度结构通过丰富的局部失效表现出明显优于均质结构的抗冲击变形能力。随着冲击强度的提升,低强度芯层的快速压实使得均质结构具有更好的抗冲击变形能力。通过合理的设计密度梯度的逐层压缩吸能,能够有效的提升防护结构的抗冲击性能,对轻量化功能梯度结构的优化设计具有一定的参考价值。
摘要:
为研究在GPa、10μs级缓前沿斜波作用下压装PBX炸药基体中微介观热点点火行为,本文设计了一种强约束压装PBX炸药非冲击点火反应驱动的斜波加载装置,基于炸药层流燃烧的燃速模型和自编的二维轴对称有限差分程序对装置输出的压力波形特性进行了分析,讨论了燃烧过程中加载炸药破碎程度和装置结构参数(壳体和隔层厚度)对输出波形的影响。计算结果表明,加载炸药破碎形成的燃烧比表面积大小是影响非冲击点火反应压力演化的关键因素,燃烧比表面积越大,输出的斜波压力越大,峰值压力可达GPa以上,对应的压力上升前沿可从数十μs降至数μs。加载炸药外部壳体厚度即约束强度对非冲击点火反应产生的压力大小影响显著,壳体越厚输出的斜波压力越大。加载炸药与受试炸药之间的隔层厚度直接关系到输出至受试炸药处的斜波压力大小,随着隔层厚度的增大,输出的斜波压力以近似指数的关系衰减。参考计算结果完成了装置的结构设计,对受试PBX炸药进行了斜波加载实验,采用PVDF测得受试炸药入射界面处的压力为1.6GPa、前沿宽度为25μs,初步证明了采用强约束压装PBX炸药非冲击点火反应实现GPa、10μs级斜波压力输出的可行性。
摘要:
针对某光学舱所采用的泡沫铝夹层防护结构在破片冲击下的抗冲击性能问题,采用Monte Carlo方法创建了泡沫铝结构的二维细观模型,在常规态型近场动力学理论中引入了Mises屈服准则和线性各向同性强化模型,建立了近场动力学塑性本构的数值计算框架。基于近场动力学计算程序模拟了低速冲击作用下泡沫铝夹层结构的塑性变形以及有机玻璃背板的裂纹扩展形态,分析了泡沫铝芯材孔隙率对该夹层结构抗冲击性能和损伤模式的影响规律。结果表明:泡沫铝夹层结构良好的塑性变形能力是其发挥缓冲与防护作用的主要因素,并且在一定范围内,泡沫铝芯材孔隙率越高,则夹层结构具有更好的抗冲击性能;当泡沫铝孔隙率从0.4提升到0.7时,泡沫铝对冲击物的动能吸收率从90%提高到99%;仿真结果与实验结果具有较好的一致性,验证了仿真结果的准确性和分析结论的有效性。通过数值仿真预测了有机玻璃背板的裂纹扩展形态,结果表明,提高泡沫铝的孔隙率能获得更好的防护效果。
摘要:
为深入认识跌落冲击条件下构型弹体内部的载荷传递规律及结构响应特征,促进战斗部装药安定性评估和结构设计,本文结合数值仿真和应力波分析手段,研究了构型弹体在跌落过程中的冲击响应特征,主要关注内部药柱的变形和损伤特性,并讨论跌落姿态、装药构型和跌落高度等因素的影响。结果表明,在跌落冲击条件下,构型弹体装药的变形并非由药柱同壳体的直接撞击作用主控,而主要受到弹体内部应力波传播的影响。装药结构最大变形和损伤区域并不位于药柱外侧同壳体相接触的位置,而是位于内部区域。冲击应力波在壳体和药柱之间的透射特征、在壳体和装药内部的反射和叠加特性等决定了药柱的主要变形区域及其变形程度。跌落姿态对药柱的响应特征和变形形貌具有重要影响,导致装药安定性风险从大到小排序的跌落姿态依次为:尾部向下垂直跌落、水平跌落、头部向下垂直跌落、倾斜跌落。药柱构型也具有重要作用,其中药柱分段界面容易使得药柱变形程度增大,但对装药过载以及变形分布特征的影响相对较小;隔板结构则容易增大装药过载,同时导致药柱的局域变形位置和变形程度均发生改变。跌落高度对药柱变形区域分布特征的影响较小,对载荷幅值、变形程度和分布范围大小等则具有重要作用,随跌落高度增加,药柱的变形和过载逐渐增大。本文基于数值仿真结合应力波传播来阐释复杂构型弹体结构响应特征的研究手段,较好地搭建了基本理论与实际工程应用之间的分析桥梁。
摘要:
基于iSALE-2D仿真代码对依兰陨石坑的形成过程进行了研究,采用欧拉算法开展数值模拟,研究了依兰陨石坑的撞击条件,统计分析了成坑过程中熔化层的形成与分布规律,结合点源成坑相似律模型,拟合得到强度机制下的成坑半径关系式。研究结果表明一颗直径120 m、撞击速度12 km/s的花岗岩质小行星垂直撞击地表形成一个与依兰陨石坑形态相似的陨石坑。再现了成坑形成的三个阶段:接触与压缩阶段、开坑阶段、后期调整阶段。大部分熔体在坑底呈分层堆叠分布,少量熔体随抛射物沉积在靶体表面,呈离散状分布,完全熔化材料质量约为撞击体质量的24倍。直径120m、撞击速度12km/s工况模拟结果与拟合的成坑半径关系式结果相对误差10.3%。
摘要:
为了考察受超高车辆撞击装配式钢筋混凝土箱梁跨线桥的冲击动力和破坏行为,本文以一起近来发生的实际工程事故为案例进行精化有限元数值分析,并提出了双质量-并联弹簧(double mass-parallel spring, DM-PS)简化车辆模型,以有效地模拟超高车辆与桥梁的非对心碰撞行为。所建议DM-PS简化模型的有效性通过与两种广泛使用的车辆模型包括全尺(full scale, FS)模型和简单刚体(simple rigid, SR)模型的比较而得到充分地评估。计算结果表明:采用F-S模型可得到与事故现场照片基本一致的跨线桥撞击区域破坏特征;SR模型高估结构的局部破坏,弱化结构的整体变形;DM-PS模型对于预测结构破坏具有较高的准确性。因此,所提出的DM-PS模型为超高车辆撞击桥梁结构防护设计提供了一个简单有效的分析手段。在此基础上,利用DM-PS模型进行了详细的结构行为参数分析,深入考察了车辆撞击速度、质量、位置以及结构形式等效应。所得到的结论为:相比撞击质量,结构的冲击动力行为对于撞击速度有更高的敏感性;跨中受撞和边跨受撞的变形和破坏模式有较大差异,边跨受撞对于单侧支座损伤更为严重;箱梁内的箱板以及底板可以有效提高结构的抗冲击性能。
摘要:
为探究聚能张开角对双线型聚能药包结构炸药有效利用率和聚能效应的影响,通过瞬时爆轰假说理论对有效聚能炸药边界方程进行推导,分析不同聚能张开角聚能装药结构炸药的有效利用率。通过水泥砂浆物理模型试验,研究不同聚能张开角预裂孔成缝规律。采用LS-DYNA数值模拟软件,建立不同聚能张开角数值模型,揭示不同聚能张开角的双线型聚能结构药包射流的侵彻过程。研究结果表明聚能张开角为75°时,炸药产生聚能效应的有效利用率最大。聚能结构药包聚能槽张开角为75°时,预裂孔成缝效果明显优于聚能槽张开角为60°的聚能结构药包,沿聚能槽方向应力集中效应和侵彻深度最佳,炮孔壁上岩石单元最先达到应力峰值。针对聚能张开角为75°的双线型聚能结构药包开展了不同岩性预裂爆破现场试验,板岩和白云岩两种不同岩性在孔距增大20%的条件下,双线型聚能预裂爆破效果优于常规预裂爆破。
摘要:
为研究不同爆距水下爆炸对重力坝的毁伤效应,并探讨是否存在“最优爆距”,基于离心模型试验建立了炸药-库水-空气-重力坝结构的全耦合数值模型并设计了60组数值计算工况。不同工况水深均为600mm,炸药量为2.2g,重力坝模型几何比尺为1/80,包含5组爆深(50~250mm),每组爆深对应12组爆距,爆距范围为10到200mm,相应比例爆距范围为0.077到1.54 m/kg1/3。对比分析了不同爆距水下爆炸对重力坝的毁伤程度并定量比较了重力坝平均损伤、单元删除率、应力、应变等参数。结果表明,对于重力坝整体结构破坏,如重力坝整体弯曲导致的拉伸破坏,水下爆炸对重力坝的毁伤效应存在“最优爆距”即随着爆距增加重力坝毁伤程度先增加后降低。定量结果同样表明,随着爆距增加,重力坝上游坝面损伤区域的平均损伤、重力坝单元删除率、坝踵最大拉应力平均值和坝踵最大拉应变平均值先增加后降低且在40mm爆距附近达到最大值。保持水深、炸药量和重力坝几何模型相同,5组不同爆深近水面水下爆炸对重力坝毁伤效应的“最优爆距”均在40mm附近,表明近水面水下爆炸时爆深对“最优爆距”不存在显著影响。
摘要:
为研究蜂窝钢管混凝土的抗侵彻性能,采用125mm口径滑膛炮开展了6发蜂窝钢管混凝土靶侵彻试验,获得不同工况下靶板破坏形态及侵深数据,分析了蜂窝钢管混凝土的典型破坏形式,对比了不同弹靶尺寸比值系数下靶板破坏形式的区别以及着靶点和钢管壁厚对蜂窝钢管混凝土抗侵彻能力的影响;同时,对7组不同壁厚的六边形钢管混凝土与3组六边形无钢管混凝土柱进行了单轴压缩试验,研究了不同壁厚下,六边形钢管对核心混凝土强度及延性的增强效应,拟合了核心混凝土强度增强系数同围箍系数的关系,并改进普通混凝土侵深计算经验公式,得到了适用于蜂窝钢管混凝土的最大侵深计算公式。结果表明:钢管壁厚是影响侵深的重要因素,壁厚越大,侵深越小;着靶点位置对侵深的影响较为复杂,具有离散性;着靶点位置对靶体表面破坏形式影响较大;钢管的存在可以有效增加核心混凝土的强度和延性;改进后的侵深计算公式可以预测弹体对蜂窝钢管混凝土靶的最大侵深。
摘要:
在良好破碎效果的前提下,通过降低孔底冲击波峰值压力来减小上向扇形深孔孔底以上岩体振动,是降低振动保护上部建筑的有效措施。为确定合理的孔底空气柱长度,采用理论研究与现场模型爆破动态测试试验相结合的方法,研究了孔底空气不耦合装药时,空气柱长度对孔壁冲击压力的变化规律,得到了炮孔底部空气间隔不耦合装药条件下轴向不耦合系数与孔壁冲击压力随时间的变化曲线;基于岩石动态抗压强度,确定了适用于软、中、硬岩石的合理底部轴向空气间隔长度范围,研究结果表明:空气间隔层的存在,使得冲击压力作用时间显著增加,而冲击压力峰值有明显减小;当K=1.5,空气柱长度200mm时,孔底峰值压力衰减比例为73.4%,当K=4,空气柱长度1.2m时,孔底峰值压力衰减比例达到96.7%。当空气间隔层大于60cm时,炮孔底部出现压力值较低的区域。现场工业试验验并对爆破后采场顶板成型和爆堆块度的观察和拍照表明:合理的底部空气间隔长度,不仅能保证良好的爆破块度,同时也能通过减小孔底峰值压力降低爆破振动以达到保护采场顶板及其它保护对象的目的。
摘要:
摘要:
阻火器是一种广泛应用的爆炸阻隔装置。为了深入理解影响阻火器性能的因素,本文通过实验方法探究了不同初始压力下可爆预混气体通过波纹板阻火器的淬熄特性。结果表明,可燃气活性、体积分数和初始压力均会影响火焰速度稳定性、传播模式以及淬熄难度。实验发现火焰传播具有三种模式:直接淬熄、穿过阻火单元后逐渐淬熄、淬熄失败。其次,可淬熄的最大初始压力Plim用以表征火焰淬熄难度,虽然其最小值位于化学计量比,但仍在一定体积分数范围内保持恒定。此外,基于传热作用得到了密闭管道中丙烷-空气预混气爆燃阻火速度公式,并通过实验验证。
优先出版栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
摘要:
为了满足高侵深和大穿孔的要求,设计一种JPC(jetting projectile charge)聚能装药,开展大尺寸钢筋混凝土墙的毁伤效应试验。在此基础上,基于修正参数的K&C(Karagozian & Case)模型进行数值模拟,研究JPC高速侵彻和爆炸冲击波对钢筋混凝土墙的联合破坏作用,分析墙体厚度对破坏效果的影响规律。结果表明,在1.7倍和2.5倍装药直径的炸高条件下,JPC均能够有效贯穿80 cm(6.7倍装药直径)厚的钢筋混凝土墙,形成直径大于6 cm(0.5倍装药直径)的柱状孔洞;聚能装药的多载荷毁伤特性决定了钢筋混凝土墙的破坏结果,爆炸冲击波能够加剧墙体正面开坑和背面崩落的破坏范围;墙体厚度对于墙体正面漏斗坑的直径与深度及内部侵彻孔洞直径均无显著影响;随着墙体厚度增大,背面漏斗坑直径逐渐减小,背面漏斗坑深度逐渐增大。
摘要:
膨胀环实验技术主要包括爆炸膨胀环实验技术和电磁膨胀环实验技术,实验过程中膨胀环的加载应变率在达到峰值后会随着圆环的膨胀而迅速降低,给研究应变率敏感材料的拉伸碎裂带来极大的不便。在前期提出的液压膨胀环实验技术的基础上,发展了一种恒应变率加载技术。首先从理论上获得了实现金属圆环恒应变率膨胀所需的液压加载曲线的近似表达式;然后采用有限元流固耦合数值模拟了液压膨胀环装置中1060-O铝环的膨胀碎裂过程,在给定液压加载曲线下,膨胀环的环向应变率在应变率稳定阶段上下波动范围最大不超过20%,进一步研究了加载曲线对碎裂过程中应变率的影响规律。在液压膨胀环实验装置上对1060-O 铝环开展了膨胀环实验,验证了恒应变率加载技术的可行性。
摘要:
研究冲击波作用下金属微观组织变化对于理解柱壳结构在高应变率下变形及破坏极为重要。实验通过对20钢金属柱壳在内部爆炸载荷作用下的爆炸回收碎片截面进行微观分析,探讨冲击波作用下材料的组织演化、相变特征,同时使用有限元方法对柱壳膨胀断裂过程中热力学特征进行分析。研究发现:20钢柱壳近内表面满足αε相变热力学条件的有限深度区域内,α晶粒内可见明显的平行滑移线分布特征;电子背散射衍射揭示了平行滑移线区域内组织碎化,且存在{112}<111>和{332}<113>两种孪晶,同时平行滑移线的碎化组织区域中存在密排六方晶格(HCP)的ε相结构,而试样原始组织及爆炸后除试样壁厚内部(0~3 mm)区域外均未见ε相结构残留。分析认为:冲击过程中发生了αε相变;相变引发的材料性能改变将可能影响断裂破坏过程;考虑冲击波作用下金属材料动态相变对结构变形与破坏的影响,对这类柱壳变形及破坏的精密物理模拟有重要意义,有必要进行进一步研究。
摘要:
为探索低强度冲击波的柔性测量技术,对PVDF(polyvinylidene fluoride)压力传感器开展冲击波加载和灵敏度标定实验,评估其低强度冲击波压力测量的可靠性。基于微结构设计改进薄膜传感器,获得适用于低强度冲击波压力测量的高灵敏柔性传感器,结果表明:单一压电工作模式的薄膜传感器测量低强度冲击波时有效输出电荷量和信噪比较低,测量结果容易受压电膜力电响应非线性、结构表面变形振动以及封装因素的影响,灵敏度系数不稳定、个体差异性大。采用周向固支的微结构设计能够将作用于薄膜传感器表面幅值较低的冲击波转换为幅值较高的面内拉应力,产生的复合压电效应可大幅提高传感器名义灵敏度系数、降低个体差异性。研制的柔性传感器在0.2~0.7 MPa压力范围内名义灵敏度约900~1350 pC/N,相对测量误差不大于±13%。
摘要:
为解决含空孔直眼掏槽中炮孔间距、炮孔与空孔距离的确定问题,首先,从爆生气体膨胀做功致裂岩体和空孔效应入手,推导了爆生裂纹的长度计算公式,确定了掏槽炮孔间距a和炮孔与空孔距离L的计算公式,得到了大空孔直眼掏槽空孔处片裂区长度公式,确立了应力集中作用下空孔迎爆侧径向裂纹产生的判据;然后,以灰岩(硬岩)和泥岩(软岩)对比分析了不同设计思想下的爆破参数和掏槽效果;最后,结合工程实践验证了理论分析的可靠性。结果表明:不同设计思想下,含空孔直眼掏槽的爆破破岩机理不同,以a为主时,相邻炮孔间裂纹的贯通是形成槽腔的关键,而以L为主且考虑空孔效应时,炮孔与空孔优先贯通形成槽腔。硬、软岩中应力波(动作用)与爆生气体(静作用)对爆生裂纹长度的贡献率约为4:1和9:1,空孔效应导致的软岩的片裂区大于硬岩的,爆破参数设计时应重点考虑;而空孔处产生径向裂纹的临界距离均小于炮孔爆生裂纹长度与空孔半径之和,因此不会产生径向裂纹,爆破参数设计时可不予考虑。以上结果说明,不同设计思想对槽腔掏槽爆破参数和槽腔爆破效果影响较大,基于爆生气体致裂的爆生裂纹长度计算模型可为爆破参数设计提供参考。
摘要:
阻火器是一种应用广泛的爆炸阻隔装置。为了深入理解影响阻火器性能的因素,通过实验方法探究了不同初始压力下可爆预混气体通过波纹板阻火器的淬熄特性。结果表明,可燃气的活性、体积分数和初始压力均会影响火焰速度稳定性、传播模式以及淬熄难度。实验发现火焰传播具有3种模式:直接淬熄、穿过阻火单元后逐渐淬熄、淬熄失败。其次,可淬熄的最大初始压力plim用以表征火焰淬熄难度,虽然其最小值位于化学计量比,但仍在一定体积分数范围内保持恒定。此外,基于传热作用得到密闭管道中丙烷-空气预混气爆燃阻火速度公式,并进行了实验验证。
摘要:
贝壳、牡蛎等天然材料因其轻质高强的力学特性在材料设计等领域受到了广泛的关注,但由于材料本身结构的复杂性,对其力学行为的研究十分困难。近年来,分数阶模型在研究材料的力学特性上取得了成功,相比传统模型,分数阶模型可以更好地表征复杂介质的应力或应变与时间的关系。因此,本文从波传播理论出发,以分数阶模型作为材料本构,得到了复杂介质的波传播控制方程。通过Laplace变换得到了控制方程的解析解,并通过Laplace数值逆变换分析了波的衰减对分数阶模型中参量的敏感性,讨论了不同于材料弹性、黏性的材料“惯性”特性。接着,基于解析解和多种实验测试信号,给出了得到分数阶模型参数的拟合式子。以牡蛎材料作为研究对象,利用CO2脉冲激光器进行小试样的冲击加载、应用两点激光干涉测速系统(velocity interferometer system for any reflector,VISAR)进行表面粒子速度测量,得到了四种密度下不同厚度的牡蛎壳试样的粒子速度时程曲线,再结合上述理论方法分析得到了牡蛎壳试样的Abel模型和分数阶Maxwell模型的参数,模型参数反映了牡蛎壳试样的细微观结构特征。结果发现:牡蛎壳试样的密度越大,即在细微观上具有砖泥结构的珍珠层的占比越高,速度衰减越大,试样的黏性越大;这是由于CO2激光脉冲器发射的激光波长与牡蛎壳试样珍珠层的砖泥结构间的缝隙尺寸相近,使得激光在冲击牡蛎壳试样中的珍珠层时发生较大的散射。本研究对于微观异构、宏观连续的复杂介质动力学性能的研究具有较好的参考意义。
摘要:
根据Π定律推导了远距离爆炸荷载作用下钢框架原型结构与缩比模型的几何相似律表达式。基于已有的钢框架子结构爆炸实验,采用AUTODYN建立了钢框架子结构数值模型,验证了流固耦合方法在结构爆炸响应分析中的可靠性。在此基础上,对比了流固耦合方法和解析爆炸边界方法在钢框架远距离爆炸数值模拟中的准确性和计算效率,结果表明,解析爆炸边界方法可以合理地模拟远距离爆炸荷载作用下钢框架的动态响应,且计算效率较高。最后,采用该方法分析了具有不同相似比的两层三跨钢框架结构在远距离爆炸荷载作用下的动态响应及毁伤效应,结果表明:该结构的动态响应和毁伤效应符合几何相似规律。
摘要:
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明,在初始液滴直径为1~70 μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;初始直径减小至1 μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越大;初始液滴直径为10~70 μm的工况范围内,爆轰波的速度随初始直径的增大先增大后减小。
摘要:
为研究高聚物牺牲包层对钢筋混凝土结构的爆炸毁伤缓解效应,开展了带高聚物牺牲包层钢筋混凝土板的接触爆炸试验,同时设置了普通钢筋混凝土板作为对照组,对比分析了高聚物牺牲包层对钢筋混凝土板毁伤特征的影响。此外,运用AUTODYN软件建立了现场爆炸试验的SPH-FEM耦合模型,通过与试验结果的对比,验证了所建耦合模型的可靠性。在此基础上,通过参数敏感性分析,探究了炸药量和高聚物牺牲包层密度、厚度对带高聚物牺牲包层钢筋混凝土板毁伤特性以及吸能特性的影响。结果表明:接触爆炸下,高聚物牺牲包层能够有效地分散爆炸荷载,缓解爆炸荷载对钢筋混凝土板的冲击作用,具有良好的防护性能;药量在一定范围内增大时,高聚物牺牲包层依然能维持较高的吸能水平,增大包层密度和厚度有利于增强高聚物牺牲包层的吸能特性,包层厚度的变化会造成被保护钢筋混凝土板毁伤模式的改变。
摘要:
基于可压缩多组分Navier-Stokes控制方程,结合五阶加权本质无振荡格式以及网格自适应加密技术和level-set方法,数值模拟了平面激波(Ma=1.23)与环形SF6气柱(内外半径分别为8和17.5 mm)界面的相互作用过程。相比于之前的实验结果,数值结果揭示了入射激波在界面内四次透射过程中的复杂波系结构,观察到透射激波在内部界面传播时形成自由前导折射结构并向自由前导冯诺依曼折射结构转换的波系演变过程;另外,界面内的复杂激波结构诱导内部下游界面上的涡量发生了三次反向;在界面演化后期,内部界面形成的“射流”结构与下游界面相互作用,诱导界面形成一对主涡、一对次级涡以及一个反向“射流”结构。定量分析环形界面长度、宽度、位移、环量以及混合率的变化情况,结果表明,内部气柱的存在减弱了前期小涡结构合并形成大涡结构过程中对界面高度与长度的影响,同时提高了重质气体与环境气体的混合率。
摘要:
为了揭示磁场对甲烷爆炸特征影响机理,开展磁场对甲烷爆炸影响实验,得出磁场对甲烷爆炸压力、火焰传播速度、爆炸产物组分及体积分数的影响规律。利用Chemkin-Pro软件模拟甲烷爆炸链式反应过程,得到甲烷爆炸过程中的关键自由基和基元反应。通过理论计算,对不同自由基在磁场作用下的受力进行分析,揭示磁场对甲烷爆炸的影响机理。研究结果表明,磁场能够降低甲烷爆炸压力和火焰传播速度,降低CO和CO2的生成量,增加甲烷的残余量;·H、·O、·OH、·CH3、·CH2O是甲烷爆炸的关键自由基,由于·O的磁化率较高,被吸引到磁感线密集的区域,·O与其他自由基的碰撞几率减少,从而降低·HCO→CO→CO2的链式反应速率,导致CO和CO2生成量降低,导致甲烷爆炸强度降低。
摘要:
使用二辊轧机对TA2工业纯钛进行多道次大应变冷轧处理,制备了冷轧总变形量为70%的TA2纯钛板。通过对冷轧TA2纯钛板进行500 ℃加热、不同保温时间的退火处理,获得了具有不同再结晶组织的钛板。基于帽形试样和限位环变形控制技术,在分离式霍普金森压杆装置上对不同再结晶组织的试样进行动态冲击冻结实验,结合光学显微镜和扫描电子显微镜表征试样冲击前后微观组织的变化,研究了再结晶组织对TA2纯钛绝热剪切行为的影响。结果表明,随着退火保温时间的延长,试样再结晶晶粒占比逐渐增大,晶粒分布由分散向局部聚集转变;在相同应变和应变率下,在所有试样中都观察到了绝热剪切带,再结晶晶粒占比高的试样更易诱发绝热剪切带中裂纹形核扩展。对比变形前后试样再结晶组织和几何必需位错变化,结合剪切区整体温升分析发现,再结晶晶粒作为材料软化点能够诱发剪切带的形成,而剪切带发展后期产生的绝热温升会促进剪切带内材料发生二次再结晶,提高剪切带内材料的韧性,延缓剪切裂纹的形成。
摘要:
强爆炸数值模拟的主要挑战在于如何准确地描述爆炸产物状态方程。利用BP神经网络和强爆炸产物状态数据对神经网络产物状态方程进行训练,并将得到的状态方程植入自编的一维球对称数值模拟程序,对强爆炸冲击波参数进行了计算。结果显示,计算得到的冲击波峰值超压、冲击波到时、正压时间与标准值吻合较好,证明将神经网络状态方程应用于强爆炸冲击波数值模拟是可行的。研究结果对确定强爆炸数值模拟方法具有很好的借鉴意义。
摘要:
低熔点金属的层裂是目前延性金属动态断裂的基础科学问题之一。采用非平衡态分子动力学方法模拟了冲击压力在13.5~61.0 GPa下单晶和纳米多晶锡的经典层裂和微层裂过程。研究结果表明:在加载阶段,冲击速度不影响单晶模型中的波形演化规律,但影响纳米多晶模型中的波形演化规律,其中经典层裂中晶界滑移是影响应力波前沿宽度的重要因素;在单晶模型中,经典层裂和微层裂中孔洞成核位置位于高势能处;在多晶模型中,经典层裂中的孔洞多在晶界(含三晶界交界处)处成核,并沿晶定向长大,产生沿晶断裂,而微层裂中孔洞在晶界和晶粒内部成核,导致沿晶断裂、晶内断裂和穿晶断裂;孔洞体积分数呈现指数增长,相同冲击速度下单晶和纳米多晶Sn孔洞体积分数变化规律一致;经典层裂中孔洞体积分数曲线的两个转折点分别表示孔洞成核与长大的过渡和材料从损伤到断裂的灾变性转变。
摘要:
研制了一种可以实现多次加载的凸轮递进式中应变率压缩实验系统。该实验装置采用伺服电机驱动蓄能飞轮转动,而后蓄能飞轮带动加载凸轮压缩加载杆的方法,进而实现对试样中应变率的压缩;同时在一级压缩即将结束时步进电机迅速推动蓄能飞轮贴近加载凸轮,实现多级压缩。试样的动态压缩载荷通过两侧杆上粘贴的应变片所记录的应变信号得到;而试样变形过程是通过激光干涉测速系统测得的试样两侧杆端的运动速度信号而得到的。以纸蜂窝试样为例,基于研制的中应变率实验系统,并结合高速摄影图片,研究了厚度10 mm、直径14.5 mm的纸蜂窝试样在应变率3.5 s−1下的动态压缩力学性能,得到了单级压缩和2级压缩过程中纸蜂窝试样的应力-应变曲线和变形过程,并讨论了该实验系统的可靠性。此实验系统可以实现多级递进式中应变率加载;纸蜂窝试样在中等应变率下的峰值强度和平台应力对高应变率下的动态压缩实验数据和低应变率下的准静态实验数据进行了较好地衔接;试样的失效模式主要为准弹性变形后的外壁屈曲和面内剪切。
摘要:
为研究Zr基非晶合金破片的冲击破碎反应机制,进行了准密封箱冲击超压实验,测试了破片的碎片粒度,分析了碎片尺寸分布关系,并对不同粒径尺度的碎片进行了X射线衍射分析。实验结果表明,材料在冲击加载下的反应程度随着撞击速度的增大而增大;碎片分布符合分段式幂次律分布规律;材料冲击诱发的化学反应主要为Zr元素与空气中氧气的燃烧,其主要反应产物为ZrO2。基于冲击升温-碎片分布-碎片燃烧的冲击破碎反应理论模型能较好的解释冲击作用下Zr基非晶合金破片的反应规律,理论计算与实验结果吻合度较高。
摘要:
为研究密闭舱室内爆角隅汇聚反射冲击波超压特性,利用缩比模型进行了某典型舱室内爆试验,得到远离角隅、两面角隅和三面角隅处的冲击波载荷,结合数值模拟研究了三种特征位置处冲击波传播规律及载荷特征。研究结果表明:远离角隅处壁面反射冲击波超压曲线呈现单峰结构,反射冲击波以球面波传播;距两面角隅一定范围内冲击波超压曲线呈现双峰结构,两面角隅冲击波超压曲线呈现单峰结构,角隅汇聚反射冲击波以椭球状传播;距三面角隅一定范围内冲击波超压曲线呈现多峰结构,三面角隅冲击波超压曲线呈现单峰结构,角隅汇聚冲击波以球面波传播;在合理假设条件下,根据量纲分析及数值模拟结果,得到首次冲击时角隅汇聚反射冲击波载荷经验计算公式。
摘要:
针对具有不同类型喷管的爆轰管在水下爆轰中形成的燃气射流问题,搭建了爆轰实验平台,研究了单次爆轰过程中尾部喷管对水下气泡形态与压力特征的影响。采用数字粒子图像测速技术对高速摄影机拍摄得到的气泡脉动图片进行流场可视化分析,得到各喷管工况下的气泡速度场。为了确认爆轰管内是否形成稳定爆轰波,并观察爆轰波在气液两相界面上的透反射特性,爆轰管尾部安装有2个动态压力传感器,同时在距离喷管一定距离处设置一个水下爆炸传感器,以监测水中传播的压力波。结果表明:扩张喷管工况下的气泡脉动过程与直喷管工况基本一致,但扩张喷管提高了燃气射流速度,气泡膨胀体积更大;因为燃气射流的持续性,收敛喷管工况下的气泡脉动过程具有明显差异,气泡膨胀体积较小,但气泡二次脉动时长相较于一次脉动时长衰减更小;扩张喷管提高了气泡脉动强度,扩张喷管工况下的气泡脉动压力与透射冲击波压力远大于直喷管工况下的气泡脉动压力与透射冲击波压力;收敛喷管工况下的气泡脉动压力与透射冲击波压力都较小,但收敛喷管燃气射流的持续性减缓了气泡脉动压力的衰减速度。相比于直喷管,扩张喷管工况下的气泡脉动时间、气泡脉动压力与透射冲击波压力都更大。收敛喷管工况下的气泡脉动持续时间较短,并且收敛喷管对透射冲击波压力和气泡脉动压力均具有明显的抑制作用。
摘要:
针对高海拔或高空的低温、低压环境对炸药爆炸冲击波传播的影响问题,利用量纲分析理论和AUTODYN有限元软件,研究了低温、低压及海拔高度对炸药爆炸冲击波参量(峰值超压、比冲量和波阵面运动轨迹)的影响规律,建立了相应的计算公式,并通过数值模拟和试验数据进行了对比验证。结果表明,该计算公式可以有效预测低温和低压环境下炸药爆炸冲击波参量。环境压力降低,爆炸冲击波峰值超压和爆炸远场(对比距离Z>0.2 m/kg1/3)比冲量减小,冲击波传播速度增大。环境温度降低,冲击波比冲量增大,传播速度减小,峰值超压影响不大。海拔高度在0~9 000 m范围内,每升高1000 m冲击波峰值超压和爆炸远场比冲量平均降低约3.9%和3.2%。海拔高度升高,爆炸近场冲击波传播速度增大,爆炸远场则减小。高海拔环境下低压对冲击波峰值超压和比冲量的影响大于低温,爆炸近场冲击波传播速度取决于低压的影响,爆炸远场取决于低温的影响。
封面
2022 年 12 期封面
2022, 42(12).  
PDF (18)
摘要:
2022 年 12 期目录
2022, 42(12): 1-2.  
在线阅读 PDF (12)
摘要:
特别约稿与研究综述
摘要:
脉搏波本构关系决定着脉搏波的传播特征。如何通过实验研究来确定脉搏波本构关系,以及如何通过这些方法从现有文献数据来获得脉搏波本构关系,是当前研究的核心之一。本文中探索了3个可行途径:(1)由实测脉搏波波速对压力的关系C(p)进行反分析(无创法);(2)直接对脉搏波p-V本构关系进行实测(有创法);(3)由一系列实测脉搏波波形进行Lagrange反分析(无创法)。采用上述方法,根据现有文献数据,发现由C(p)关系的Rogers-Huang简化式可推得指数型p(V)本构关系;由MK-Hughes式可推得对数型p(V)本构关系。脉搏波传播特性随非线性本构参数发生显著变化。按中医体质分类观点,相应的脉搏波本构关系原则上也有不同类型,因人而定。在这个意义上,脉搏波的Lagrange反分析具有广阔发展前景,但它对正确选择测点和提高测量敏感性和精度等方面提出了更高要求。
爆炸物理
摘要:
为探究肺部爆炸伤的致伤机制与评价指标,构建了人体-爆炸流场有限元模型,通过与爆炸事故中人员损伤情况比对,验证了模型的有效性。共进行39个爆炸工况的数值模拟,通过改变爆炸当量与距离,使得胸部受到不同量级爆炸载荷作用,肺部损伤等级从无损伤到严重损伤。通过分析爆炸流场分布、胸腔动力学响应、肺部应力分布等阐明肺部爆炸伤的力学机制。基于人体有限元模型输出的损伤响应,提出肺部爆炸伤的评价指标。研究结果表明:在爆炸载荷作用下,胸前壁高速撞击胸腔脏器,导致肺部产生应力波。随后在惯性作用下,胸前壁持续挤压胸腔脏器,并造成胸腔变形。应力波是造成肺部损伤的主要原因,胸腔变形挤压肺部造成的损伤风险较低。肺部损伤集中在靠近胸前壁及心脏的区域。胸骨速度峰值和胸骨加速度峰值可作为肺部爆炸伤的评价指标。胸部压缩量及黏性响应系数不能反映应力波对肺部造成的损伤,不适合评价肺部爆炸伤。
冲击动力学
摘要:
建立了颗粒流子弹发射有限元模型,利用离散元和有限元的联合模拟方法,研究了高速颗粒流冲击负泊松比内凹蜂窝夹芯梁的动态响应及缓冲吸能机理。分析了加载冲量、冲击角、芯材强度以及颗粒流子弹与面板间的摩擦力等因素对夹芯梁动态响应的影响。研究结果表明:夹芯梁在正向颗粒流子弹冲击载荷作用下表现为局部凹陷和整体弯曲的耦合变形模式,面内设计芯材因胞壁弯曲呈现局部内凹的变形模式,面外设计芯材因胞壁屈曲呈现局部褶皱的变形模式。在等面密度的条件下,采用面外设计的硬芯夹芯梁面板的跨中最大挠度比采用面内设计的软芯夹芯梁小,但初始冲击力峰值和冲击力整体水平较高,冲击力响应时间较短。夹芯梁前后面板的跨中最大挠度与冲击载荷近似呈对数线性递增关系。与正向冲击相比,斜冲击下夹芯梁的变形模式具有非对称性,局部凹陷程度减小;在颗粒流子弹不同冲击角度作用下,夹芯梁前后面板的跨中最大挠度、初始冲击力峰值以及传递到夹芯梁的动能和动量占比随冲击角度的增大而减小,而颗粒流子弹与夹芯梁面板间的摩擦因数对夹芯梁的动态响应无显著影响。
摘要:
考虑到一些对裂纹要求较严格的混凝土结构可能遭受到冲击载荷的威胁,利用混凝土三维细观力学模型对混凝土板在炸药爆炸(接触爆炸、封闭爆炸)载荷作用下的响应和破坏情况进行数值模拟,并就影响靶板内裂纹扩展结果的因素展开参数讨论。模型考虑了混凝土材料的内部细观结构(包括粗骨料体积分数、尺寸、级配等)以及三相材料力学性能的影响,准确地预测了混凝土板在2种爆炸条件下的裂纹形貌和开坑尺寸。通过与宏观均质模型的模拟结果进行对比可知,细观模型预测的接触爆炸条件下混凝土靶板的开坑形态、尺寸,以及封闭爆炸条件下混凝土盖板的主裂纹数量,均与实验观察更为贴近。此外,参数研究结果表明,三维细观力学模型的全局网格尺寸以及模型内各组分的相对网格尺寸均会对模拟结果的精度产生影响,选择与空气网格尺寸相当的混凝土网格尺寸,可以在获得较准确模拟结果的同时保证计算效率;骨料粒径大小也会影响混凝土板在爆炸载荷作用下的响应和破坏结果。混凝土三维细观力学模型能够反映混凝土结构在冲击载荷作用下的损伤和破坏的细观机理及影响因素,对指导工程设计和结构安全评估具有重要的理论意义和实际应用价值。
摘要:
采用氯仿粘结聚碳酸酯(polycarbonate, PC)板和聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)板模拟含异质界面模型;在PC介质中布置柱状炮孔并与界面呈一定角度,根据炮孔端部与界面相对位置,分别于柱状炮孔两个端部设置起爆点,起爆点远离界面端部时定义为孔口起爆,靠近界面端部时定义为孔底起爆;借助数字图像相关实验系统,研究爆炸应力波通过异质界面后PMMA介质应变场演化过程及炮孔底部区域拉、压应变变化规律。实验结果表明,异质界面改变了爆炸应力波过界面后的传播形态。孔口起爆时,异质界面受爆破荷载作用后易形成应力集中区,界面处产生开裂,横向拉伸波作用是造成异质界面开裂的主要原因。起爆方式对过界面后介质PMMA的横/纵向拉、压应变场作用贡献不同,主要体现在应变场强度、拉/压应变场位置分布2个方面。在炮孔底部区域,起爆方式对应变场时程特性的影响主要体现在作用时效长短和应变强度2个方面。孔口起爆时,横/纵向应变体现出短时效、高强度的变化特征。就应变强度而言,起爆方式对横向压应变的影响显著强于其对纵向拉应变的影响。对空间分布特性影响主要体现在衰减程度,起爆方式对纵向应变衰减程度影响较大。无论采用何种起爆方式,爆炸应变场在PC介质中衰减速度较快,进入PMMA介质后衰减速度显著降低。
摘要:
基于Kong-Fang混凝土材料模型和LS-DYNA的多物质ALE算法,开展混凝土中爆炸波衰减规律的数值模拟研究。首先,基于已有实验数据对材料模型参数和数值算法的可靠性进行了验证,在此基础上分析球形装药在混凝土自由场中爆炸波衰减规律,利用量纲分析和数值模拟拟合了球形装药在混凝土自由场中近区爆炸波峰值应力计算公式并明确其适用范围;然后,分析装药埋深对混凝土中装药正下方不同距离处爆炸波峰值应力分布的影响,建立了耦合系数与装药埋深和测点距离之间的定量关系。结果表明:Kong-Fang混凝土材料模型可实现对混凝土中爆炸波传播衰减规律的高精度数值模拟;定义混凝土中装药质量系数和耦合常数,可定量描述装药埋深和测点距离对峰值应力耦合系数的影响;建立的混凝土中近区爆炸波峰值应力计算公式可较准确地快速预测不同装药埋深、不同测点距离和不同混凝土强度时爆炸波峰值应力。研究结果可为混凝土结构抗爆设计和爆炸毁伤评估提供参考。
摘要:
基于30 mm口径弹道炮平台,开展了3种不同椭圆横截面弹体在200~600 m/s撞击速度范围内正侵彻2A12铝靶的实验,获得了2A12铝靶的破坏形貌及弹体的剩余速度。在此基础上,建立了相应的数值模型,结合实验结果验证了所建模型的有效性,并系统分析了弹体横截面长短轴长度比对靶体的破坏情况及响应特性的影响。研究结果表明:弹体最大横截面面积是影响弹体剩余速度的主要因素,而弹体横截面长短轴长度比对弹体剩余速度的影响较弱;在圆形横截面弹体侵彻下靶体背部形成的花瓣大小和形状一致,空间分布均匀,而在椭圆横截面弹体侵彻下,随着弹体横截面长短轴长度比的增大,靶体背部形成的花瓣数量增加、尺寸变小,且在短轴方向的花瓣数量和靶体表面隆起高度均大于长轴方向的;靶体在圆形横截面弹体侵彻下的径向位移、径向应力和切向应力与其在椭圆横截面弹体侵彻下的显著不同,前者沿周向方向各点的变化规律基本一致,靶体处于简单的压缩状态,切向应力为零,而后者各点的应力状态与弹体横截面长短轴长度比和周向角密切相关,靶体受到压缩和剪切应力的耦合作用。
摘要:
针对空投航行体和火箭助飞航行体高速入水过程中遭受巨大的冲击载荷,可能导致的结构损坏、弹道失控等问题,提出了一种开槽包裹式缓冲头帽,用于保护航行体入水过程中的结构安全。首先,给出了缓冲头帽的详细设计参数,基于任意拉格朗日-欧拉算法,建立了航行体带缓冲头帽高速入水数值模型,并对该数值模型的正确性进行了验证。然后,在此基础上,研究了不同入水角度下,空泡流场的演变过程,分析了入水时缓冲材料的应力分布情况。最后,探究了不同入水速度和入水角度下缓冲头帽的降载性能。结果表明,数值计算所得空泡形态与实验图像基本吻合,且数值计算和实验测试所得的冲击加速度变化趋势基本一致,两者轴向加速度峰值相对误差为6.72%,径向加速度峰值相对误差为7.52%。航行体装备所设计的缓冲头帽以300 m/s的速度垂直入水时轴向降载率为22.17%;以100 m/s的速度60°入水时,轴向降载率为31.83%,径向降载率为66.80%。
实验技术与数值方法
摘要:
基于电爆炸丝引爆炸药、继而驱动尼龙对金属柱壳进行碰撞加载的方式,在金属柱壳中部、半柱高范围内实现了一维柱面膨胀加载。同时,基于沿轴向的加载(或径向速度)一致性和沿环向的加载(或径向速度)轴对称性,提出了一维柱面加载的有效性判据。相比于滑移爆轰加载,一维柱面加载方式具有应力状态相对简单、易简化为二维轴对称问题分析的优点。在柱壳断裂诊断方面,建立了分布式表面速度诊断方法来监测柱壳圆周范围内的初始断裂。其原理为:均匀承载壳体断裂引起的局部承载失效将导致均匀速度曲线簇出现分叉(或演化趋势变化)。与高速分幅照相诊断方法相比,分布式表面速度诊断方法可准确获取柱壳圆周范围内的初始断裂信息(含断裂时刻和断裂位置)。利用建立的线起爆膨胀柱壳实验加载和诊断技术,获得了304钢和45钢柱壳的一维柱面动态拉伸初始断裂性能数据(含断裂应变、平均应变率),其中,45钢柱壳的断裂应变(或延展性)低于304钢柱壳的。
摘要:
二级轻气炮是一种常见的超高速发射装置,多年来其数值研究大多采用简化一维模型,鲜有三维有限元模型。以14 mm口径高压气体驱动二级轻气炮为研究对象,采用耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)算法,根据膜片破裂与否,将二级轻气炮模型解耦为2个分级三维数值模型。为确定实验难以测得的参数(材料摩擦因数和膜片破膜压力),设计正交试验,拟合确定活塞与泵管间摩擦因数为0.82,弹丸与发射管摩擦因数为0.30和膜片破膜压力为11.73 MPa。正交结果表明,摩擦因数对计算结果影响较大,在高压气体驱动二级轻气炮的计算中不应忽略。通过上述方法建立数字化高压气体驱动二级轻气炮,完整复现气炮发射过程,计算的弹丸终速与实验结果吻合度高。选取验证工况详细分析了气炮发射过程内流场变化,并呈现关键时刻的压力云图。该气炮简化方法、分级思想和关键参数确认方法可推广应用于固体发射药驱动、爆轰驱动等其他驱动形式的二级/多级轻气炮。
应用爆炸力学
摘要:
承插式管道接口更易受到外界荷载破坏导致管道失效,为保证爆破开挖过程中邻近承插式高密度聚乙烯(high-density polyethylene,HDPE)波纹管道的安全运营,控制爆破振动荷载对管道的影响是重点关注内容。通过全尺度预埋单段HDPE波纹管道现场试验,得到管道的振动速度和动应变响应数据,结合LS-DYNA数值模拟软件分别建立了无承插接口管道与含弹性密封圈的承插式HDPE波纹管道;利用现场试验数据验证了无承插口管道模型参数的可靠性,并对比分析了承插式管道的结构位移、振动速度、有效应力的响应规律与失效机制;结合现行规范,根据管道响应规律与接口允许旋转角度计算得到了承插式管道的安全振动速度。研究结果表明:有承插口管道的合振速、合位移和有效应力大于无承插口管道;在同一截面上,有承插口管道迎爆侧的合振速和有效应力更大,而最大合位移出现在截面的背爆侧;管道合位移与合振速在轴线中心处截面最大,并向两端不断减小,有承插口管道中心合位移更大;通过接口允许旋转角度得到此类工况条件下的承插式管道的安全振速为24.77 cm/s。
摘要:
通过有限元软件LS-DYNA建立了舱内爆炸载荷下箱型舱室动响应数值模型,并借助文献试验结果验证了数值模型的可靠性,研究了平板型、内凹型、外凸型、箭头型、箭矢型、背面弧型等6种角隅连接结构对舱内爆炸载荷下箱型舱室变形、特征位置压力和破坏模式的影响,分析了内爆效应下角隅连接结构的失效机理。数值结果表明:舱壁角隅位置是舱内爆炸载荷作用下舱室易发生破坏撕裂的特征位置;相比无连接结构,平板型连接结构对舱壁最大塑性变形改善最大,降低幅度达到了31.9%;背面弧型连接结构能够使箱型舱室角隅等效塑性应变降低约60%;设置连接结构能够改变高塑性应变的发生位置,进而改变箱型舱室的破坏模式;采用平板型、内凹型、背面弧型连接结构的箱型舱室能够有效避免角隅失效破坏。
摘要:
在3种角度分叉管道内开展化学计量比氢气-空气爆轰实验,采用自制的火焰传感器和烟迹法分别获得了爆轰波传播速度和胞格结构,探究了不同角度管道分叉对爆轰传播的影响。结果表明:氢气-空气爆轰在经过分叉三通时受分叉口稀疏波影响导致爆轰波衰减解耦,但随着入射激波与下游管道壁面碰撞,逐渐由规则反射向马赫反射转变,最终完成重起爆过程。其中,直通支管内爆轰衰减主要受支管入口面积的影响,随着分叉角度增大,入口面积减小,爆轰衰减程度和重起爆距离也随之减小;而分叉支管内,爆轰衰减受支管入口面积与入口渐扩程度共同影响,但随着分叉角度的增大,入口面积变为主要影响因素。不同角度分叉管内的实验结果均表明,初始压力升高能显著提高爆轰稳定性,从而削弱分叉几何结构的影响。
摘要:
为了解受限空间内不同氮气体积分数φ对氢-空气泄爆的影响,在高1 m的顶部开口容器中进行了实验。结果表明:当φ≤40%时,容器内部的最大压力峰值由外部爆炸造成;而当φ>40%时,内部最大压力峰值则由泄爆膜破裂引起;在所有实验中,都观察到内部压力的亥姆霍兹振荡,其振荡频率随φ的增加而降低;声学振荡仅出现在φ=25%, 30%时;容器内3个不同压力监测点(靠近泄爆口、容器中心和接近容器底端)的最大爆炸超压pmax都随着φ的增加而降低,且整体上最大的pmax始终在爆炸容器底部附近出现。但当φ>40%时,3个监测点间pmax的差异可忽略不计;外部最大爆炸超压也随φ的增加而减小,且不论其大小如何,均对内部压力曲线有显著影响。