酚醛层压材料的冲击力学行为及本构模型

侯海周 胡毅亭 彭金华 靳建伟

侯海周, 胡毅亭, 彭金华, 靳建伟. 酚醛层压材料的冲击力学行为及本构模型[J]. 爆炸与冲击, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06
引用本文: 侯海周, 胡毅亭, 彭金华, 靳建伟. 酚醛层压材料的冲击力学行为及本构模型[J]. 爆炸与冲击, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06
Hou Hai-zhou, Hu Yi-ting, Peng Jin-hua, Jin Jian-wei. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion And Shock Waves, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06
Citation: Hou Hai-zhou, Hu Yi-ting, Peng Jin-hua, Jin Jian-wei. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion And Shock Waves, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06

酚醛层压材料的冲击力学行为及本构模型

doi: 10.11883/1001-1455(2015)06-0858-06
详细信息
    作者简介:

    侯海周(1979—), 男, 博士研究生, 工程师, houhaizhou99@163.com

  • 中图分类号: O347.3

Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading

  • 摘要: 为了研究酚醛层压材料的冲击力学行为并获得本构模型,利用万能试验机和整形修正的分离式霍普金森压杆(SHPB)装置,对材料试样进行了应变率范围为10-3~103 s-1的单轴压缩实验,得到了不同加载应变率下的应力应变曲线,对其在准静态、动态载荷下的压缩破坏机理进行了初步探讨。结果表明,酚醛层压材料具有较强的应变率效应,与准静态(1.67×10-3 s-1)时相比,在动态载荷(7×102 s-1)下,峰值应力增加了约10倍;破坏应变减少了约一半;在准静态和动态加载条件下试样力学性能的差异是由于纤维基体界面特性以及不同应变率下破坏模式的不同;采用朱-王-唐本构方程描述了酚醛层压材料力学行为,拟合得到了本构方程的系数,在加载过程中,理论计算值与实验结果吻合较好。
  • 图  1  SHPB装置

    Figure  1.  SHPB device

    图  2  冲击实验的典型波形

    Figure  2.  Typical waveform of impact experiment

    图  3  动态压缩下不同应变率的应力应变曲线

    Figure  3.  Stress-strain curves of impact experiment at high speed

    图  4  准静态压缩下不同应变率下的应力应变曲线

    Figure  4.  Stress-strain curves of impact experiment at low speed

    图  5  应力-自然对数应变率的曲线

    Figure  5.  Stress-logarithmic strain curve

    图  6  宏观破坏模式

    Figure  6.  Macroscopic failure mode at different strain rates

    图  7  实验值和拟合值的比较

    Figure  7.  Comparison of the experimental and the fitting values

  • [1] 孙朝翔, 鞠玉涛, 胡少青, 等.聚碳酸酯高应变率分离式霍普金森压杆实验研究[J].南京理工大学学报, 2012, 36(3): 529-533. http://www.cnki.com.cn/Article/CJFDTotal-NJLG201203029.htm

    Sun Chao-xiang, Ju Yu-tao, Hu Shao-qing, et al. Experimental investigation of polycarbonate at high strain rate by SHPB[J]. Journal of Nanjing University of Science and Technology, 2012, 36(3): 529-533. http://www.cnki.com.cn/Article/CJFDTotal-NJLG201203029.htm
    [2] 谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究[J].实验力学, 2013, 28(2): 220-226. http://www.cqvip.com/QK/91138X/20132/45886843.html

    Xie Zhong-qiu, Zhang Peng-peng. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material[J]. Journal of Experimental Mechanics, 2013, 28(2): 220-226. http://www.cqvip.com/QK/91138X/20132/45886843.html
    [3] 管公顺, 王少恒, 成方圆.不同加载应变率下有机玻璃的压缩破坏与力学行为[J].航空材料学报, 2012, 32(6): 96-101. http://d.wanfangdata.com.cn/Periodical/hkclxb201206016

    Guan Gong-shun, Wang Shao-heng, Cheng Fang-yuan. Compression failure and mechanics behavior of PMMA under different loading strain rates[J]. Journal of Aeronautical Materials, 2012, 32(6): 96-101. http://d.wanfangdata.com.cn/Periodical/hkclxb201206016
    [4] 王礼立, 施绍裘, 陈江瑛, 等. ZWT非线性热粘弹性本构关系的研究与应用[J].宁波大学学报:理工版, 2000, 13: 141-149. http://www.cqvip.com/Main/Detail.aspx?id=4997411

    Wang Li-li, Shi Shao-qiu, Chen Jiang-ying, et al. ZWT non-linear thermo-viscoelastic constitutive relationship between research and application[J]. Journal of Ningbo University: Natural Science & Engineering Edition, 2000, 13: 141-149. http://www.cqvip.com/Main/Detail.aspx?id=4997411
    [5] 王礼立, Pluvinage G, Labibes K.冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J].宁波大学学报, 1995, 8(3): 30-57. http://www.cnki.com.cn/Article/CJFDTotal-NBDZ503.005.htm

    Wang Li-li, Pluvinage G, Labibes K. The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University, 1995, 8(3): 30-57. http://www.cnki.com.cn/Article/CJFDTotal-NBDZ503.005.htm
    [6] 邹广平, 杨继, 王瑞瑞, 等.聚氨酯夹芯整体层连复合材料的力学性能研究[J].哈尔滨工业大学学报, 2011, 43: 257-261. http://www.cqvip.com/QK/90629X/2011S1/1003576966.html

    Zou Guang-ping, Yang Ji, Wang Rui-rui, et al. Experimental investigation on mechanical properties of the integrated hollow core sandwich composite filling polyurethane[J]. Journal of Harbin Institute of Technology, 2011, 43: 257-261. http://www.cqvip.com/QK/90629X/2011S1/1003576966.html
    [7] Forquin P, Nasraoui M, Rusinek A. Experimental study of the confined behavior of PMMA under quasi-static and dynamic loading[J]. International Journal of Impact Engineering, 2012, 40/41(1): 46-57. http://www.sciencedirect.com/science/article/pii/S0734743X11001473
    [8] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J].爆炸与冲击, 2005, 25(4): 368-373. doi: 10.11883/1001-1455(2005)04-0368-06

    Song Li, Hu Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368-373. doi: 10.11883/1001-1455(2005)04-0368-06
    [9] Zhang H D, Zhu Z W, Song S C, et al. Dynamic behavior of frozen soil under uniaxial strain and stress conditions[J]. Applied Mathematics and Mechanics: English Edition, 2013, 34(2): 229-238. doi: 10.1007/s10483-013-1665-x
    [10] Christmann A, Ienny P, Quantin J C, et al. Mechanical behavior at large strain of polycarbonate nanocomposites during uniaxial tensile test[J]. Polymer, 2011, 52(18): 4033-4044. doi: 10.1016/j.polymer.2011.06.056
    [11] 王鹏飞, 胡时胜.轴向尺寸对泡沫铝动静态力学性能的影响[J].爆炸与冲击, 2012, 32(4): 393-398. doi: 10.11883/1001-1455(2012)04-0393-06

    Wang Peng-fei, Hu Shi-sheng. Mechanical properties of foam aluminum with different sizes[J]. Explosion and Shock Waves, 2012, 32(4): 393-398. doi: 10.11883/1001-1455(2012)04-0393-06
    [12] Capan I, Tarimci C, Hasasan A K. Characterization and optical vapour sensing properties of PMMA thin films[J]. Materials Science and Engineering: C, 2009, 29(1): 140-143. http://www.sciencedirect.com/science/article/pii/S0928493108001185
    [13] 胡泽斌, 许金余, 席峰, 等. EPS混凝土的冲击力学行为及本构模型[J].振动与冲击, 2011, 30(2): 65-68. http://d.wanfangdata.com.cn/Periodical/zdycj201102013

    Hu Ze-bin, Xu Jin-yu, Xi Feng, et al. Dynamic behavior and constitutive model of styropor concrete under impact loading[J]. Journal of Vibration and Shock, 2011, 30(2): 65-68. http://d.wanfangdata.com.cn/Periodical/zdycj201102013
    [14] Casem D, Weerasooriya T, Moy P. Inertia effects of quartz force transducers embedded in a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45: 368-376. doi: 10.1007/BF02428167
  • 加载中
图(7)
计量
  • 文章访问数:  3171
  • HTML全文浏览量:  394
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-18
  • 修回日期:  2014-10-05
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回