基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析

邓勇军 陈小伟 姚勇 杨涛

邓勇军, 陈小伟, 姚勇, 杨涛. 基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析[J]. 爆炸与冲击, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10
引用本文: 邓勇军, 陈小伟, 姚勇, 杨涛. 基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析[J]. 爆炸与冲击, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10
Deng Yongjun, Chen Xiaowei, Yao Yong, Yang Tao. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion And Shock Waves, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10
Citation: Deng Yongjun, Chen Xiaowei, Yao Yong, Yang Tao. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion And Shock Waves, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10

基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析

doi: 10.11883/1001-1455(2017)03-0377-10
基金项目: 

国家自然科学基金项目 11225213

国家自然科学基金项目 11390361

国家自然科学基金项目 11390362

详细信息
    作者简介:

    邓勇军(1987—), 男, 博士研究生, 助理研究员

    通讯作者:

    陈小伟, chenxiaoweintu@yahoo.com

  • 中图分类号: O382

On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model

  • 摘要: 为研究混凝土细观因素对刚性弹正侵彻弹道偏转的影响,基于骨料随机投放的思路建立混凝土三维细观几何模型,分析刚性弹正侵彻过程中发生弹道偏转的原因及可能影响因素,定量讨论混凝土细观因素对弹道偏转的影响。结果表明:混凝土细观数值模型可以较好地反映弹体正侵彻过程中弹道偏转等典型物理现象,且细观参数对于弹体弹道偏转有显著影响。刚性弹正侵彻细观混凝土时,存在一个弹体直径/骨料最大粒径比的特征比值。
  • 图  1  细观模型建立流程图

    Figure  1.  Flow diagram of meso-scopic modeling

    图  2  骨料投放示意图

    Figure  2.  Schematic diagram of aggregate distribution

    图  3  细观模型各组成部分有限元剖分

    Figure  3.  Each component's FEM of meso-scopic model

    图  4  靶板迎弹面破坏模式

    Figure  4.  Failure mode of the target on the impact side

    图  5  弹体尺寸

    Figure  5.  Projectile geometry

    图  6  混凝土靶板尺寸

    Figure  6.  Concrete target geometry

    图  7  不同尺寸的有限元模型弹道图

    Figure  7.  Ballistc trajectories of finite element models with different dimensions

    图  8  均匀模型混凝土靶的侵彻过程

    Figure  8.  Penetration process of uniform concrete models

    图  9  细观建模的混凝土靶的侵彻过程

    Figure  9.  Penetration process of mesoscopic concrete models

    图  10  侵彻过程中刚性弹运动示意

    Figure  10.  Motion of a rigid projectile during penetration

    图  11  弹体偏转角的定义

    Figure  11.  Definition of the deflexion angle of a rigid projectile

    图  12  弹体侵彻过程中各参数随时间的变化曲线

    Figure  12.  Motion parameter-time curves of the projectile during penetration

    图  13  靶体尺寸及侵彻位置示意图

    Figure  13.  Target dimension and penetration location

    图  14  骨料随机分布对弹体偏转的影响

    Figure  14.  Projectile deflection affected by aggregate random distribution

    图  15  骨料强度对弹体偏转的影响

    Figure  15.  Projectile deflection affected by aggregate strength

    图  16  砂浆强度对弹体偏转的影响

    Figure  16.  Projectile deflection affected by motar strength

    图  17  不同入射速度下,不同γ值时,弹体偏转角度的时程曲线

    Figure  17.  Deflection angle-time curves of the projectiles at different γ values and different impact velocities

    表  1  不同级配骨料粒径分布

    Table  1.   Distribution of aggregates with different gradations

    骨料粒径/mm 骨料类型 骨料级配 Vs:Vm:Vb:Vh
    5~20 Small Stone 1st gradation 1:0:0:0
    20~40 Medium stone 2nd gradation 5.5:4.5:0:0
    40~80 Big stone 3rd gradation 3:3:4:0
    80~150 Huge stone 4th gradation 2:2:3:3
    下载: 导出CSV

    表  2  弹体及混凝土材料参数

    Table  2.   Material parameters of projectile and concrete

    材料类型 ρ/(kg·m-3) E/GPa μc σt/MPa σc/MPa
    Aggregate 2 660 0.16 10 160
    Motar 2 280 0.22 4 15
    ITZ 2 000 0.16 2 10
    Concrete 2 440 0.2 5 48
    Projectile 8 020 210 0.3
    下载: 导出CSV

    表  3  剩余速度对比

    Table  3.   Contrast of residual velocities

    v0/(m·s-1) vr/(m·s-1)
    实验 模拟
    360 67 73
    381 136 157
    434 214 237
    606 449 470
    749 615 633
    1 058 947 963
    下载: 导出CSV
  • [1] Backmann M E, Goldsmith W.The mechanics of penetration of projectiles into targets[J].International Journal of Engineering Science, 1978, 16(1):1-99. doi: 10.1016/0020-7225(78)90002-2
    [2] 钱伟长.穿甲力学[M].北京:国防工业出版社, 1984:23-35.
    [3] Goldsmith W.Review:Non-ideal projectile impact on targets[J].International Journal of Impact Engineering, 1999, 22(2/3):95-395. http://d.old.wanfangdata.com.cn/Periodical/zgyxllx201711029
    [4] Corbett G G, Reid S R, Johnson W.Impact loading of plates and shells by free-flying projectiles:A review[J].International Journal of Impact Engineering, 1996, 18(2):141-230. doi: 10.1016/0734-743X(95)00023-4
    [5] Li Q M, Reid S R, Wen H M, et al.Local impact effects of hard missiles on concrete targets[J].International Journal of Impact Engineering, 2006, 32(1/2/3/4):224-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f836952d7e21bc3f5f0eb712e6968392
    [6] Warren T L, Fossum A F, Frew D J.Penetration into low-strength (23 MPa) concrete:Target characterization and simulations[J].International Journal of Impact Engineering, 2004, 30(5):477-503. doi: 10.1016/S0734-743X(03)00092-7
    [7] Forrestal M J, Frew D J, Hickerson J P, et al.Penetration of concrete targets with deceleration-time measurements[J].International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2
    [8] 陈小伟.穿甲/侵彻问题的若干工程研究进展[J].力学进展, 2009, 39(3):316-351. doi: 10.3321/j.issn:1000-0992.2009.03.006

    Chen Xiaowei.Advances in the penetration/perforation of rigid projectiles[J].Advances in Mechanics, 2009, 39(3):316-351. doi: 10.3321/j.issn:1000-0992.2009.03.006
    [9] Neville A M.Properties of concrete[M].5ed.Prentice Hall, 2012:112-119.
    [10] 何翔, 徐翔云, 孙桂娟, 等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击, 2010, 30(1):1-6. http://www.bzycj.cn/CN/abstract/abstract8811.shtml

    He Xiang, Xu Xiangyun, Sun Guijuan, et al.Experimental investigation on projectiles' high-velocity penetration into concrete target[J].Explosion and Shock Waves, 2010, 30(1):1-6. http://www.bzycj.cn/CN/abstract/abstract8811.shtml
    [11] Wang Z M, Kwan A K H, Chan H C.Mesoscopic study of concrete I:Generation of random aggregate structure and finite element mesh[J].Computers and Structures, 1999, 70(5):533-544. doi: 10.1016/S0045-7949(98)00177-1
    [12] Fuller W B, Thompson S E.The laws of proportioning concrete[M]//The American Society of Civil Engineers.Transactions of the American Society of Civil Engineers: Vol.LIX, 1926: 67-172.
    [13] 刘光廷, 高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版), 2003, 43(8):1120-1123. doi: 10.3321/j.issn:1000-0054.2003.08.033

    Liu Guangting, Gao Zhengguo.Random 3-D aggregate structure for concrete[J].Journal of Tsinghua University (Science and Technology), 2003, 43(8):1120-1123. doi: 10.3321/j.issn:1000-0054.2003.08.033
    [14] Vervuurt A.Interface fracture in concrete[D].Delft University of Technology, 1997: 45-49.
    [15] Hanchak S J, Forrestal M J.Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J].International Journal of Impact Engineering, 1992, 12(1):1-7. doi: 10.1016/0734-743X(92)90282-X
    [16] 梁斌.弹丸对有界混凝土靶侵彻研究[D].绵阳: 中国工程物理研究院, 2004: 62-89. http://cdmd.cnki.com.cn/Article/CDMD-82818-2004124640.htm
    [17] 陈小伟, 李继承.刚性弹侵彻深度和阻力的比较分析[J].爆炸与冲击, 2009, 29(6):584-589. doi: 10.3321/j.issn:1001-1455.2009.06.005

    Chen Xiaowei, Li Jicheng.Analysis on the penetration depth and resistive force in the deep penetration of a rigid projectile[J].Explosion and Shock Waves, 2009, 29(6):584-589. doi: 10.3321/j.issn:1001-1455.2009.06.005
    [18] Chen Xiaowei.Dynamics of metallic and reinforced concrete targets subjected to projectile impact[D].Singapore: Nanyang Technological University, 2003: 50-67.
    [19] 李志康, 黄风雷.混凝土材料的动态空腔膨胀理论[J].爆炸与冲击, 2009, 29(1):95-100. http://www.bzycj.cn/CN/abstract/abstract8874.shtml

    Li Zhikang, Huang Fenglei.dynamic spherical cavity-expansion theory for concrete materials[J].Explosion and Shock Waves, 2009, 29(6):95-100. http://www.bzycj.cn/CN/abstract/abstract8874.shtml
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  4715
  • HTML全文浏览量:  1528
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-09
  • 修回日期:  2016-03-27
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回