非理想情况下磁化球形重质气体物理爆炸的数值模拟

林震亚 陈志华 刘迎 洪延姬

林震亚, 陈志华, 刘迎, 洪延姬. 非理想情况下磁化球形重质气体物理爆炸的数值模拟[J]. 爆炸与冲击, 2017, 37(3): 422-430. doi: 10.11883/1001-1455(2017)03-0422-09
引用本文: 林震亚, 陈志华, 刘迎, 洪延姬. 非理想情况下磁化球形重质气体物理爆炸的数值模拟[J]. 爆炸与冲击, 2017, 37(3): 422-430. doi: 10.11883/1001-1455(2017)03-0422-09
Lin Zhenya, Chen Zhihua, Liu Ying, Hong Yanji. Influence of nonideal magnetic field on physical explosion of spherical heavy gas[J]. Explosion And Shock Waves, 2017, 37(3): 422-430. doi: 10.11883/1001-1455(2017)03-0422-09
Citation: Lin Zhenya, Chen Zhihua, Liu Ying, Hong Yanji. Influence of nonideal magnetic field on physical explosion of spherical heavy gas[J]. Explosion And Shock Waves, 2017, 37(3): 422-430. doi: 10.11883/1001-1455(2017)03-0422-09

非理想情况下磁化球形重质气体物理爆炸的数值模拟

doi: 10.11883/1001-1455(2017)03-0422-09
基金项目: 

国家自然科学基金项目 11272156

详细信息
    作者简介:

    林震亚(1990—),男,博士

    通讯作者:

    陈志华, chenzh@mail.njust.edu.cn

  • 中图分类号: O381

Influence of nonideal magnetic field on physical explosion of spherical heavy gas

  • 摘要: 采用磁流体力学(magnetohydrodynamics, MHD)方程组对非理想情况下磁场对球形重质气体物理爆炸的作用过程进行数值模拟,同时,为了保证每一步中磁场散度为零,引入由12-solve CTU算法衍生出的CTU+CT算法。结果清晰地显示了重质气体团在磁场影响下的整个爆炸过程。在非理想情况下,爆炸过程中气体团界面产生液滴状结构,随着气体团被压缩,不稳定性现象最终得到抑制。从结果中看出,电阻和双极扩散效应会阻碍磁场对气体团的作用,同时,双极扩散效应还会增大磁压力的作用范围。
  • 图  1  理想情况下激波结构及流动界面的演化

    Figure  1.  The shock wave structure and the evolution of the interface under the ideal conditions

    图  2  B0=0.05 T, η=0, ηAD=0的情况下,不同时刻沿着y=-x的压力分布

    Figure  2.  Pressure distribution along y=-x at different times when B0=0.05 T, η=0, ηAD=0

    图  3  B0=0.05 T, η=0, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s的情况下,不同时刻沿y=-x的磁压力分布

    Figure  3.  Magnetic pressure distribution along y=-x at different times when B0=0.05 T, η=0, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s

    图  4  B0=0.05 T时非理想情况下激波结构及流动界面的演化

    Figure  4.  The shock wave structure and the evolution of the interface under the nonideal conditions when B0=0.05 T

    图  5  B0=0.05 T, η=10-6 Ω·m, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s的情况下,不同时刻沿着y=-x的磁压力分布情况

    Figure  5.  Magnetic pressure distribution along y=-x at different times when B0 = 0.05 T, η=10-6 Ω·m, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s

    图  6  B0=0.05 T, η=10-6 Ω·m, ηAD=0的情况下,不同时刻沿着y=-x的磁压力分布

    Figure  6.  Magnetic pressure distribution along y=-x at different times when B0=0.05 T, η=10-6 Ω·m, ηAD=0

    图  7  B0=0.05 T, η=0, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s的情况下,不同时刻沿着y=-x的磁压力分布情况

    Figure  7.  Magnetic pressure distribution along y=-x at different times when B0=0.05 T, η=0, ηAD=$\frac{1}{{{10}^{4}}\rho }$ m2·Pa/s

  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1954, 13(2):297-319. doi: 10.1002-cpa.3160130207/
    [2] Meshkov E E. Instability of a shock wave accelerated interface between two gases[J]. NASA Technical Translation F-13, 1970:74. http://d.old.wanfangdata.com.cn/Periodical/wlxb201723027
    [3] Cohen R H, Dannevik W P, Dimits A M, et al. Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation[J]. Physics of Fluids, 2002, 14(10):3692-3709. doi: 10.1063/1.1504452
    [4] Yang Yumin, Zhang Qiang, Sharp D H. Small amplitude theory of Richtmyer-Meshkov instability[J]. Physics of Fluids, 1994, 6(5):1856-1873. doi: 10.1063/1.868245
    [5] Velikovich A L. Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefaction wave[J]. Physics of Fluids, 1996, 8(6):1666-1679. doi: 10.1063/1.868938
    [6] Velikovich A L. Richtmyer-Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads[C]//41st Annual Meeting of the Division of Plasma Physicsics Meeting. American Physical Society, 1999.
    [7] Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2001, 34(34):445-468. http://d.old.wanfangdata.com.cn/Periodical/wlxb201723027
    [8] Sturtevant B. Rayleigh-Taylor instability in compressible fluids[J]. California Institute of Technology Report, 1989:92. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0402318
    [9] Zoldi C A. A numerical and experimental study of a shock-accelerated heavy gas cylinder[D]. New York: State University of New York, 2002.
    [10] Layes G, Métayer O L. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion[J]. Physics of Fluids, 2007, 19(4):501-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=debe921b528f2bf99453d0abeabfbad9
    [11] 邹立勇, 刘金宏, 谭多望, 等.弱激波冲击无膜重气柱和气帘界面的实验研究[J].高压物理学报, 2010, 24(4):241-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001828991

    Zou Liyong, Liu Jinhong, Tan Duowang, et al. Experimental study on the membraneless heavy gas cylinder and gas curtain interfaces impacted by a weak shock wave[J]. Chinese Journal of High Pressure Physics, 2010, 24(4):241-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001828991
    [12] Zhang Qiang, Graham M J. A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks[J]. Physics of Fluids, 1998, 10(4):974-992. doi: 10.1063/1.869624
    [13] Zhang Qiang, Graham M J. Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry[J]. Physical Review Letters, 1997, 79(14):2674-2677. doi: 10.1103/PhysRevLett.79.2674
    [14] Dutta S, Glimm J, Grove J W, et al. Spherical Richtmyer-Meshkov instability for axisymmetric flow[J]. Mathematics and Computers in Simulation, 2004, 65(4/5):417-430. http://www.sciencedirect.com/science/article/pii/S0378475404000266
    [15] Glimm J, Grove J, Zhang Y, et al. Numerical study of axisymmetric richtmyer-meshkov instability and azimuthal effect on spherical mixing[J]. Journal of Statistical Physics, 2002, 107(1):241-260. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cac9e80fe96ff73075d3d6ce99a8e6c3
    [16] Holmes R L, Dimonte G, Fryxell B, et al. Richtmyer-Meshkov instability growth: Experiment, simulation and theory[J]. Journal of Fluid Mechanics, 1999, 389(4):55-79. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211419717/
    [17] Lindl J D, Mccrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9):32-40. doi: 10.1063/1.881318
    [18] Arnett D. The role of mixing in astrophysics[J]. Physics, 2000, 127(2):213. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1012.1925
    [19] Samtaney R. Suppression of the Richtmyer-Meshkov instability in the presence of a magnetic field[J]. Physics of Fluids, 2003, 15(8):53-56. doi: 10.1063/1.1591188
    [20] Wheatley V, Samtaney R, Pullin D I. The Richtmyer-Meshkov instability in magnetohydrodynamics[J]. Physics of Fluids, 2009, 21(8):445. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1206.2087
    [21] 胡希伟.等离子体理论基础[M].北京:北京大学出版社, 2006:6-9.
    [22] Saltzman J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184
    [23] Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. Journal of Computational Physics, 2007, 205(2):509-539. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0712.2634
    [24] Chapman S, Cowling T G. Non-uniform gases: Scientific books: The mathematical theory of non-uniform gases[J]. Science, 1940, 91(2372):575. doi: 10.1126/science.91.2372.575
    [25] Brown S C, Holt E H. Introduction to electrical discharges in gases[J]. American Journal of Physics, 1968, 36(9):854-854. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0711.1672
    [26] 薛大文, 陈志华, 韩珺礼.球形重质气体物理爆炸特性[J].爆炸与冲击, 2014, 34(6):759-763. http://d.old.wanfangdata.com.cn/Periodical/bzycj201406017

    Xue Dawen, Chen Zhihua, Han Junli. Physical characteristics of circular heavy gas cloud explosion[J]. Explosion and Shock Waves, 2014, 34(6):759-763. http://d.old.wanfangdata.com.cn/Periodical/bzycj201406017
    [27] Zhuang Zhihong, Xue Dawen, Chen Zhihua, et al. The eruption of a high-pressure cylindrical heavy gas cloud[J]. Canadian Journal of Physics, 2013, 91(10):850-854. doi: 10.1139/cjp-2013-0014
  • 加载中
图(7)
计量
  • 文章访问数:  4229
  • HTML全文浏览量:  1269
  • PDF下载量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-26
  • 修回日期:  2016-01-05
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回