γα相变的室温动态特性

李英雷 叶想平 王志刚

李英雷, 叶想平, 王志刚. 铈γ→α相变的室温动态特性[J]. 爆炸与冲击, 2017, 37(3): 459-463. doi: 10.11883/1001-1455(2017)03-0459-05
引用本文: 李英雷, 叶想平, 王志刚. 铈γα相变的室温动态特性[J]. 爆炸与冲击, 2017, 37(3): 459-463. doi: 10.11883/1001-1455(2017)03-0459-05
Li Yinglei, Ye Xiangping, Wang Zhigang. Dynamic characteristics of the γ→α phase transition of cerium at room temperature[J]. Explosion And Shock Waves, 2017, 37(3): 459-463. doi: 10.11883/1001-1455(2017)03-0459-05
Citation: Li Yinglei, Ye Xiangping, Wang Zhigang. Dynamic characteristics of the γα phase transition of cerium at room temperature[J]. Explosion And Shock Waves, 2017, 37(3): 459-463. doi: 10.11883/1001-1455(2017)03-0459-05

γα相变的室温动态特性

doi: 10.11883/1001-1455(2017)03-0459-05
详细信息
    作者简介:

    李英雷(1974-),男,博士,副研究员,ylli@caep.cn

  • 中图分类号: O381

Dynamic characteristics of the γα phase transition of cerium at room temperature

  • 摘要: 通过试样组件尺寸匹配设计的被动围压SHPB实验,获得了99.8%纯铈在1.7GPa静水压内的、包含γα相变和逆相变过渡区的室温动态静水压-体应变连续曲线。研究显示:室温铈γα相变是具有明显滞后现象的一级相变,而非以往研究认为的体积跃变的一级相变;相变过渡区的静水压范围是0.8~1.3GPa。逆相变过渡区的静水压范围是0.6~1.1GPa;逆相变过渡区的静水压-体应变曲线滞后于相变过渡区的静水压-体应变曲线0.15GPa静水压;在相变和逆相变过渡区内,静水压-体应变曲线按照约4.2GPa体积模量的线性关系演化;演化机制为γα两相均匀混合、静水压驱动两相组份转化。基于该演化机制,构建了描述相变前后和相变过程的静水压-体应变响应的三段线性模型。
  • 图  1  实验装置结构示意图

    Figure  1.  Schematic of experiment system

    图  2  室温铈的静水压-体应变曲线

    Figure  2.  Curves of hydrostatic pressure and volume strain of cerium at room temperature

    图  3  室温铈静水压-体应变的实验曲线与模型曲线对比

    Figure  3.  Comparison of experimental and model simulating curves of hydrostatic pressure and volume strain of cerium at room temperature

  • [1] Nikolaev A V, Tsvyashchenko A V.The puzzle of the γα and other phase transitions in cerium[J].Physics-Uspekhi, 2012, 55(7):657-680. doi: 10.3367/UFNe.0182.201207b.0701
    [2] Bridgman P W.The compression of 39 substances to 100, 000 kg/cm[J].Proceedings of American Academy of Arts and Sciences, 1927, 62:207. doi: 10.2307/25130122
    [3] Koskenmaki D C and Gschneidner J K A.Handbook on the physics and chemistry of rare earths[M].Amsterdam:North-Holland Publishing Company, 1978.
    [4] Allen J W, Martin R W.Kondo volume collapse and the γα transition in cerium[J].Physical Review Letters, 1982, 49(15):1106-1110. doi: 10.1103/PhysRevLett.49.1106
    [5] Voronov F F, Goncharova V A, Stal'gorava O V.Elastic properties of cerium at the pressures up to 84 kbar and the temperature of 293 K[J].Soviet Journal of Experimental and Theoretical Physics, 1979, 49:687. http://adsabs.harvard.edu/abs/1979JETP...49..687V
    [6] Johansson B, Abrikosov I A, Alden M, et al.Calculated phase diagram for the γα transition in Ce[J].Physical Review Letters, 1995, 74(12):2335-2338. doi: 10.1103/PhysRevLett.74.2335
    [7] Amadon B, Biermann S, Georges A, et al.The γ-α transition of cerium is entropy driven[J].Physical Review Letters, 2006, 96(6):066402-1-4. doi: 10.1103/PhysRevLett.96.066402
    [8] Held K, McMaham A K, Scalettar R J.Cerium volume collapse:Results from the merger of dynamical mean-field theory and local density approximation[J].Physical Review Letters, 2001, 87(27):276404. doi: 10.1103/PhysRevLett.87.276404
    [9] Lipp M J, Jackson D, Cynn H, et al.Thermal signatures of the Kondo volume collapse in cerium[J].Physical Review Letters, 2008, 101(16):165703-1-4. doi: 10.1103/PhysRevLett.101.165703
    [10] Decremps F, Belhadi L, Farber D L, et al.Diffusionless γα phase transition in polycrystalline and single-crystal cerium[J].Physical Review Letters, 2011, 106(6):065701. doi: 10.1103/PhysRevLett.106.065701
    [11] Jeong I K, Darling T W, Graf M J, et al.Role of the lattice in the γα phase transition of ce:a high-pressure neutron and X-ray diffraction study[J].Physical Review Letters, 2004, 82(10):092102. http://adsabs.harvard.edu/abs/2004APS..MARW20012J
    [12] Wang Z, Bi Y, Xu L, et al.Elasticity of cerium up to 4.4 GPa by sound velocity measurements under hydrostatic pressure[J].Materials Research Express, 2014, 1(2):026501-1-9. doi: 10.1088/2053-1591/1/2/026501
    [13] Rueff J P, Itie J P, Taguchi M, et al.Probing the γ-α transition in bulk Ce under pressure:a direct investigation by resonant inelastic X-ray scattering[J].Physical Review Letters, 2006, 96(3):237403-1-4. http://www.europepmc.org/abstract/MED/16803402
    [14] Bassett W A.Diamond anvil cell, 50th birthday[J].High Pressure Research, 2009, 29(2):163-186. doi: 10.1080/08957950802597239
    [15] Wang Z, Liu Y, Bi Y, et al.Hydrostatic pressure and temperature calibration based on phase diagram of bismuth[J].High Pressure Research, An International Journal, 2012, 32(2):167-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b001199573d0370dd7e18015c949e475
    [16] 李英雷, 叶想平, 张祖根, 等.一种适用于低体模量材料的被动围压SHPB实验设计[J].爆炸与冲击, 2014, 34(6):667-672. http://www.bzycj.cn/CN/abstract/abstract9400.shtml

    Li Yinglei, Ye Xiangping, Zhang Zugen, et al.A design of passive confined SHPB experiment for materials with low bulk modulus[J].Explosion and Shcok Waves, 2014, 34(6):667-672. http://www.bzycj.cn/CN/abstract/abstract9400.shtml
    [17] 冯端.金属物理学(第2卷相变)[M].北京:科学出版社, 2000:9-10.
  • 加载中
图(3)
计量
  • 文章访问数:  4093
  • HTML全文浏览量:  1210
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 修回日期:  2016-04-05
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回