水下爆炸冲击凹陷液面诱导射流研究

张桂夫 朱雨建 杨基明

张桂夫, 朱雨建, 杨基明. 水下爆炸冲击凹陷液面诱导射流研究[J]. 爆炸与冲击, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238
引用本文: 张桂夫, 朱雨建, 杨基明. 水下爆炸冲击凹陷液面诱导射流研究[J]. 爆炸与冲击, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238
ZHANG Guifu, ZHU Yujian, YANG Jiming. A study on jet flow induced by underwater explosion at a pit-interface[J]. Explosion And Shock Waves, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238
Citation: ZHANG Guifu, ZHU Yujian, YANG Jiming. A study on jet flow induced by underwater explosion at a pit-interface[J]. Explosion And Shock Waves, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238

水下爆炸冲击凹陷液面诱导射流研究

doi: 10.11883/bzycj-2016-0238
基金项目: 

国家自然科学基金项目 11572313

国家自然科学基金项目 11621202

详细信息
    作者简介:

    张桂夫(1990-), 男, 博士研究生

    通讯作者:

    朱雨建, yujianrd@ustc.edu.cn

  • 中图分类号: O381;O358

A study on jet flow induced by underwater explosion at a pit-interface

  • 摘要: 利用液滴坠落冲击直管中水平液面产生半球形凹陷,并以此凹陷液面作为初始界面进行水下爆炸冲击诱导射流的实验研究。以高速摄影为主要手段,结合Fluent数值模拟,揭示了凹陷液面在水下爆炸冲击作用下的变形过程和机理。实验结果表明,随着爆炸的发生,液面凹陷中心会汇聚形成纤细光滑的射流,同时在管壁附近会产生附加环状射流,这明显区别于冲击直管中水平液面诱导射流的现象。进一步研究发现,中心射流的产生主要源于液面凹陷对爆炸能量的汇聚作用,而附加射流的产生受到液面初始形状和管壁剪切阻力的共同影响,二者经历短暂的加速过程之后均以一个近似恒定的速度向上抬升。通过考察能量对射流的影响发现,中心射流与附加射流的速度均与充电电压(爆炸能量的1/2次方)呈线性正相关;中心射流形态特征基本不变,附加射流则随能量的变化呈现不同的形态。
  • 图  1  实验装置示意图以及液面凹陷随时间的变化过程

    Figure  1.  Schematic of experimental setup and the evolution of a pit varying with time

    图  2  数值模拟中初始界面的简化设置方法和初始压力为2.84 MPa时的数值模拟结果

    Figure  2.  Simplified setup of the initial interface in the numerical simulation and numerical simulation results at 2.84 MPa

    图  3  不同冲击能量下气柱上沿(金属罩)位置随时间变化

    Figure  3.  Air length varying with time under different impact energy

    图  4  冲击直管中凹陷液面诱导射流发展的高速摄影图像

    Figure  4.  Sequential images of the jetting flow in a straight tube with a pit on initial liquid surface

    图  5  不同时刻压力及射流顶点位置模拟结果(p0=2.84 MPa)

    Figure  5.  Pressure and location of jet tip at different times (p0=2.84 MPa)

    图  6  倾斜拍摄的射流发展过程图像(Uc=200 V)

    Figure  6.  Experimental result of upper oblique view of the jetting flow (Uc=200 V)

    图  7  滑移边界模拟结果(p0=2.84 MPa)

    Figure  7.  Numerical simulation results with slip wall (p0=2.84 MPa)

    图  8  中心射流顶点速度随时间变化

    Figure  8.  Central jet velocity varying with time

    图  9  稳定后的中心射流速度随充电电压Uc的变化

    Figure  9.  Velocity of central jet versus charging voltage

    图  10  气柱最大速度与中心射流速度和附加射流速度对比

    Figure  10.  Maximum bubble velocity versus central jet velocity and additional jet velocity

    表  1  各个工况的模拟压力和对应的实验充电电压

    Table  1.   Initial pressure of simulation corresponding to charging voltage of experiments

    工况 p0/MPa Uc/V
    1 1.60 150
    2 2.84 200
    3 4.44 250
    4 6.40 300
    5 8.70 350
    下载: 导出CSV
  • [1] ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead[R]. Albuquerque, NM, USA: Sandia Labs, 1976. http://adsabs.harvard.edu/abs/1976mesl.rept.....A
    [2] VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces[J]. Journal of Applied Physics, 2005, 98(11):113508. doi: 10.1063/1.2132521
    [3] ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces[J]. Journal of Applied Physics, 2007, 102(1):013522. doi: 10.1063/1.2752130
    [4] CHEN Y, HU H, TANG T, et al. Experimental study of ejecta from shock melted lead[J]. Journal of Applied Physics, 2012, 111(5):053509. doi: 10.1063/1.3692570
    [5] 王裴, 秦承森, 张树道, 等.SPH方法对金属表面微射流的数值模拟[J].高压物理学报, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014

    WANG Pei, QIN Chengsen, ZHANG Shudao, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics[J]. Chinese Journal of High Pressure Physics, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014
    [6] 刘超, 王裴, 秦承森, 等.冲击压力及加载速率对沟槽微射流的影响[J].计算物理, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005

    LIU Chao, WANG Pei, QIN Chengsen, et al. Effect of pressure and shock wave risetime on material ejection[J]. Chinese Journal of Computational Physics, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005
    [7] SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface[J]. Journal of Applied Physics, 2013, 113(15):153501. doi: 10.1063/1.4801800
    [8] DURAND O, SOULARD L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[J]. Journal of Applied Physics, 2012, 111(4):044901. doi: 10.1063/1.3684978
    [9] BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 1: Rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170:479-497. doi: 10.1017/S0022112086000988
    [10] BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 2: Free surface[J]. Journal of Fluid Mechanics, 1987, 181:197-212. doi: 10.1017/S0022112087002052
    [11] BLAKE J R, Gibson D C. Cavitation bubbles near boundaries[J]. Annual Review of Fluid Mechanics, 1987, 19(1):99-123. doi: 10.1146/annurev.fl.19.010187.000531
    [12] DADVAND A, KHOO B C, SHERVANI-TABAR M T. A collapsing bubble-induced microinjector: an experimental study[J]. Experiments in Fluids, 2009, 46(3):419-434. doi: 10.1007/s00348-008-0568-3
    [13] ZHANG A M, CUI P, WANG Y. Experiments on bubble dynamics between a free surface and a rigid wall[J]. Experiments in Fluids, 2013, 54(10):1-18. doi: 10.1007/s00348-013-1602-7
    [14] ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy[J]. Journal of Fluid Mechanics, 2015, 776:137-160. doi: 10.1017/jfm.2015.323
    [15] ZHANG S, WANG S P, ZHANG A M. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator[J]. Physics of Fluids, 2016, 28(3):032109. doi: 10.1063/1.4944349
    [16] ANTKOWIAK A, BREMOND N, LE DIZES S, et al. Short-term dynamics of a density interface following an impact[J]. Journal of Fluid Mechanics, 2007, 577(577):241-250. http://cat.inist.fr/?aModele=afficheN&cpsidt=18699835
    [17] ANTKOWIAK A, BREMOND N, DUPLAT J, et al. Cavity jets[J]. Physics of Fluids, 2007, 19(9):91112-91700. doi: 10.1063/1.2775413
    [18] TAGAWA Y, OUDALOV N, VISSER C W, et al. Highly focused supersonic microjets[J]. Physical Review X, 2012, 2(3):031002. doi: 10.1103/PhysRevX.2.031002
    [19] PETERS I R, TAGAWA Y, OUDALOV N, et al. Highly focused supersonic microjets: numerical simulations[J]. Journal of Fluid Mechanics, 2013, 719(1):587-605. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/div-classtitlehighly-focused-supersonic-microjets-numerical-simulationsdiv/7A9E524D0031CDC97ADC24AC356AAE5A
    [20] KIYAMA A, TAGAWA Y, ANDO K, et al. Effects of a water hammer and cavitation on jet formation in a test tube[J]. Journal of Fluid Mechanics, 2016, 787(2):224-236. http://adsabs.harvard.edu/abs/2016JFM...787..224K
    [21] KOITA T, ZHU Y, SUN M. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube[J]. Shock Waves, 2016, 27(2):1-14. doi: 10.1007/s00193-016-0654-z
    [22] 张桂夫, 朱雨建, 李元超, 等.狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流[J].爆炸与冲击, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08

    ZHANG Guifu, ZHU Yujian, LI Yuanchao, et al. Bubble and jet induced by underwater wire explosion in narrow tube[J]. Explosion and Shock Waves, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
    [23] ZHANG G, ZHU Y, YANG J, et al. Liquid jets produced by an immersed electrical explosion in round tubes[J]. Physics of Fluids, 2017, 29(6):062102. doi: 10.1063/1.4984801
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5818
  • HTML全文浏览量:  1907
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2017-01-18
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回