材料动态强度直接测量的磁压剪实验技术及应用

王桂吉 罗斌强 陈学秒 赵剑衡 陈光华 谭福利 孙承纬 吴刚

王桂吉, 罗斌强, 陈学秒, 赵剑衡, 陈光华, 谭福利, 孙承纬, 吴刚. 材料动态强度直接测量的磁压剪实验技术及应用[J]. 爆炸与冲击, 2018, 38(2): 258-265. doi: 10.11883/bzycj-2017-0019
引用本文: 王桂吉, 罗斌强, 陈学秒, 赵剑衡, 陈光华, 谭福利, 孙承纬, 吴刚. 材料动态强度直接测量的磁压剪实验技术及应用[J]. 爆炸与冲击, 2018, 38(2): 258-265. doi: 10.11883/bzycj-2017-0019
WANG Guiji, LUO Binqiang, CHEN Xuemiao, ZHAO Jianheng, CHEN Guanghua, TAN Fuli, SUN Chengwei, WU Gang. Magnetically applied pressure shear for directly measuring dynamic strength of materials[J]. Explosion And Shock Waves, 2018, 38(2): 258-265. doi: 10.11883/bzycj-2017-0019
Citation: WANG Guiji, LUO Binqiang, CHEN Xuemiao, ZHAO Jianheng, CHEN Guanghua, TAN Fuli, SUN Chengwei, WU Gang. Magnetically applied pressure shear for directly measuring dynamic strength of materials[J]. Explosion And Shock Waves, 2018, 38(2): 258-265. doi: 10.11883/bzycj-2017-0019

材料动态强度直接测量的磁压剪实验技术及应用

doi: 10.11883/bzycj-2017-0019
基金项目: 

国家自然科学基金项目 11272295

国家自然科学基金项目 11502252

国家自然科学基金项目 11327803

四川省青年科技创新团队研究项目 2016TD0022

详细信息
    作者简介:

    王桂吉(1977-), 男, 博士, 研究员, guiji_wang@caep.cn

  • “第十一届全国爆炸力学学术会议”推荐论文
  • 中图分类号: O347.3

Magnetically applied pressure shear for directly measuring dynamic strength of materials

  • 摘要: 提出一种用于直接测量动载荷下材料强度的新方法,即磁驱动压剪联合加载实验技术。从理论和数值计算上分析了压/剪联合作用下材料的应力偏量与屈服强度关系,计算斜波加载下压/剪联合作用时应力偏量与屈服强度的时空演化特性,给出材料强度数值的计算方法。并基于自行研制的强脉冲电流装置和10 T准静态磁场发生器,利用多点双光源外差位移干涉仪(dual laser heterodyne velocimetry, DLHV),开展磁压剪实验对2种铝样品的动态强度进行测量,得到不同加载压力下铝样品的强度。结果表明:磁驱动压/剪联合加载技术为材料的高压强度直接测量提供了一种新途径,是可靠的实验技术。
    1)  “第十一届全国爆炸力学学术会议”推荐论文
  • 图  1  磁压剪实验示意图

    Figure  1.  Schematic of magnetically applied pressure shear loading

    图  2  压剪加载压力时程曲线

    Figure  2.  Typical loading pressure histories of longitudinal and shear stresses

    图  3  磁压剪联合加载计算模型

    Figure  3.  Calculated model of magnetically applied pressure shear loading

    图  4  样品中的纵向应力和切向应力

    Figure  4.  Longitudinal stress and shear stresses in the sample

    图  5  铝样品压剪状态下切应力分量与等效屈服应力关系

    Figure  5.  Relation of deviatoric stress and yield stress in aluminum sample under pressure-shear loadings

    图  6  ZrO2窗口自由面纵向和横向速度

    Figure  6.  Longitudinal and transverse velocities at rear surface of ZrO2 window

    图  7  磁驱动实验装置CQ-4

    Figure  7.  Magnetically driven experimental apparatus CQ-4

    图  8  10 T准静态磁场发生器

    Figure  8.  10 T quasi-static magnetic field generator

    图  9  充电电压8kV时线圈对中的放电电流和线圈中心位置磁场随时间变化曲线

    Figure  9.  Discharging current in the coil pair and magnetic field in the centre of coil at charging voltage of 8 kV

    图  10  实验负载区结构三维效果图

    Figure  10.  Three-dimensional drawing of experimental loading regime

    图  11  PDV测量的ZrO2单晶自由面±15°倾角方向速度时程曲线

    Figure  11.  History of velocity at ZrO2 window free surface measured by PDV at ±15° slope angle

    图  12  ZrO2界面纵向和横向速度曲线

    Figure  12.  History of longitudinal and transverse velocities at ZrO2 window rear surface

    图  13  斜波加载下铝的屈服强度

    Figure  13.  Yield strength of aluminum under ramp wave loadings

  • [1] FOWLES G R. Shock wave compression of hardened and annealed 2024 aluminum[J]. Journal of Applied Physics, 1961, 32(8):1475-1487. doi: 10.1063/1.1728382
    [2] ASAY J R, LIPKIN J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded materials[J]. Journal of Applied Physics, 1978, 49(7):4242-4247. doi: 10.1063/1.325340
    [3] IGONIN V V, IGNATOVA O N, LEBEDEV A I, et al. Influence of dynamic properties on perturbation growth in tantalum[J]. AIP Conference, 2009, 1195(1):1085-1088. http://www.osti.gov/scitech/biblio/21366836-influence-dynamic-properties-perturbation-growth-tantalum
    [4] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. IEEE International Conference on Plasma Science, 2005, 12(5):104-104. https://www.researchgate.net/publication/234941223_Accessing_Ultra-High_Pressure_Quasi-Isentropic_States_of_Matter
    [5] PARK H S, LORENZ K T, CAVALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010, 104(13):135504. doi: 10.1103/PhysRevLett.104.135504
    [6] KOLLER L R, FOWLES G R. Simultaneous generation and measurement of longitudinal and shear waves in shock compressed media[M]. NewYork: Plenum Press, 1979:927.
    [7] YOUNG C, DUBUGNON O. A reflected shear wave technique for determining dynamic rock strength[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1977, 14(15):247-259. https://www.researchgate.net/publication/245474538_A_Reflected_Shear-Wave_Technique_for_Determining_Dynamic_Rock_Strength
    [8] ABOU-SAYED A S, CLIFTON R J, HERMANN L. The oblique-plate impact experiment[J]. Experimental Mechanics, 1976, 16(4):127-132. doi: 10.1007/BF02321106
    [9] 唐志平.压剪复合平板冲击加载技术进展及其应用[J].力学进展, 2007, 37(3):398-408. doi: 10.6052/1000-0992-2007-3-J2005-125

    TANG Zhiping. Advance and application of pressure shear compound plate shock loading technique[J]. Advances in Mechanics, 2007, 37(3):398-408. doi: 10.6052/1000-0992-2007-3-J2005-125
    [10] 徐松林, 唐志平, 谢卿, 等.压剪联合冲击下K9玻璃中的失效波[J].爆炸与冲击, 2005, 25(5):385-392. doi: 10.11883/1001-1455(2005)05-0385-08

    XU Songlin, TANG Zhiping, XIE Qing, et al. Failure wave of K9 glass under pressure shear shock loading[J]. Explosion and Shock Waves, 2005, 25(5):385-392. doi: 10.11883/1001-1455(2005)05-0385-08
    [11] 唐志平, 胡晓军, 廖香丽.压剪炮和压剪复合加载技术[J].中南工业大学学报, 2001, 32(增刊):9-12.

    TANG Zhiping, HU Xiaojun, LIAO Lixiang. Pressure shear compound loading technique and pressure shear gun[J]. Journal of Central South University of Technology, 2001, 32(Suppl):9-12.
    [12] 马维, 段祝平.压剪复合应力波作用下材料动态断裂韧性研究[J].固体力学学报, 2002, 23(1):12-23. http://www.irgrid.ac.cn/handle/1471x/8290?mode=full

    MA Wei, DUAN Zhuping. Dynamic fracture toughness of materials under pressure shear complex stress waves[J]. Chinese Journal of Solid Mechanics, 2002, 23(1):12-23. http://www.irgrid.ac.cn/handle/1471x/8290?mode=full
    [13] JOHNSON J N. Shock propagation produced by planar impact in linearly elastic anisotropic media[J]. Journal of Applied Physics, 1971, 42(13):5522-5530.DOI: 10.1063/1.1659974.
    [14] CHHABILDAS L C, SWEGLE J W. Dynamic pressure-shear loading of materials using anisotropic crystals[J]. Journal of Applied Physics, 1980, 51(9):4799-4807.DOI: 10.1063/1.328312.
    [15] CHHABILDAS L C, SWEGLE J W. On the dynamical response of particulate-loaded materials Ⅰ: Pressure-shear loading of aluminum particles in an epoxy[J]. Journal of Applied Physics, 1982, 53(2):954-956.DOI: 10.1063/1.330574.
    [16] 俞宇颖, 谭华, 戴诚达, 等.高压屈服强度测量方法比较研究[J].高压物理学报, 2013, 27(6):821-827. doi: 10.11858/gywlxb.2013.06.005

    YU Yuying, TAN Hua, DAI Chengda, et al. Comparison of measurement methods of material strength at high pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(6):821-827. doi: 10.11858/gywlxb.2013.06.005
    [17] VOGLER T J, CHHABILDAS L C. Strength behavior of materials at high pressures[J]. International Journal of Impact Engineering, 2006, 33(1):812-825.DOI: 10.1016/j.ijimpeng.2006.09.069.
    [18] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression[J]. Journal of Applied Physics, 2008, 103(8):083514-722. doi: 10.1063/1.2902855
    [19] VOGLERT J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4):671-694. doi: 10.1016/j.ijplas.2008.12.003
    [20] ALEXANDER C S, ASAY J R, HAILL T A. Magnetically applied pressure-shear: A new method for direct measurement of strength at high pressure[J]. Journal of Applied Physics, 2010, 108(12):812. doi: 10.1063/1.3517790
    [21] WANG Guiji, LUO Binqiang, ZHANG Xuping, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Review of Scientific Instruments, 2013, 84(1):015117. doi: 10.1063/1.4788935
    [22] 王桂吉, 赵剑衡, 孙承纬, 等.磁驱动准等熵加载装置CQ-4的加载能力及主要应用[J].实验力学, 2015, 30(2):252-263. doi: 10.7520/1001-4888-15-001

    WANG Guiji, ZHAO Jianheng, SUN Chengwei, et al. On the loading capability and main applications of magnetically driven quasi-isentropic compression device CQ-4[J]. Journal of Experimental Mechanics, 2015, 30(2):252-263. doi: 10.7520/1001-4888-15-001
    [23] 陈学秒, 王桂吉, 章林文, 等.用于磁压剪技术的10 T准静态磁场发生器[J].强激光与粒子束, 2013, 25(8):2152-2156. http://www.opticsjournal.net/abstract.htm?id=OJ130729000111B9EbHd

    CHEN Xuemiao, WANG Guiji, ZHANG Linwen, et al. 10 T quasi-static magnetic field generator for magnetically applied pressure shear experiments[J]. High Power Laser and Particle Beams, 2013, 25(8):2152-2156. http://www.opticsjournal.net/abstract.htm?id=OJ130729000111B9EbHd
    [24] 陈学秒, 万连茂, 王桂吉, 等.10T脉冲磁场的亥姆霍兹线圈热和力分析[J].强激光与粒子束, 2014, 26(5):053201. https://www.researchgate.net/profile/Guiji_Wang/publication/273709298_Thermal_and_stress_analysis_of_Helmholtz_coil_for_10_T_pulsed_magnetic_field_generation/links/556c3c7b08aeccd7773a3f5e.pdf?origin=publication_detail

    CHEN Xuemiao, WAN Lianmao, WANG Guiji, et al. Thermal and stress analysis of Helmholtz coil for 10T pulsed magnetic field generation[J]. High Power Laser and Particle Beams, 2014, 26(5):053201. https://www.researchgate.net/profile/Guiji_Wang/publication/273709298_Thermal_and_stress_analysis_of_Helmholtz_coil_for_10_T_pulsed_magnetic_field_generation/links/556c3c7b08aeccd7773a3f5e.pdf?origin=publication_detail
    [25] CHEN G H, WANG D T, LIU J, et al. A novel photonic Doppler velocimetry for transverse velocity measurement[J]. Review of Scientific Instruments, 2013, 84(1):013101. doi: 10.1063/1.4776186
    [26] 罗斌强, 陈学秒, 王桂吉, 等.磁驱动压-剪联合加载下材料动态强度的直接测量[J].中国科学:物理学力学天文学, 2016, 46(11):114601-8. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201802003.htm

    LUO Binqiang, CHEN Xuemiao, WANG Guiji, et al. Direct measurement of material dynamic strength under high pressure using magnetically driven pressure-shear loading[J]. Scientia Sinica Physica: Mechanica & Astronomica, 2016, 46(11):114601-8. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201802003.htm
    [27] LUO B Q, CHEN X M, WANG G J, et al. Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading[J]. International Journal of Impact Engineering, 2017, 100(2):56-61. https://www.sciencedirect.com/science/article/pii/S0734743X16305139
    [28] MASHIMO T, NAKAMURA A, KODAMA M, et al. yielding and phase transition under shock compression of yttria-doped cubic zirconia single crystal and polycrystal[J]. Journal of Applied Physics, 1995, 77(10):5060-5068. doi: 10.1063/1.359314
    [29] DOLAN D H, AO T. Cubic zirconia as a dynamic compression window[J]. Journal of Applied Physics, 2008, 93(2):021908. https://www.researchgate.net/publication/224407434_Cubic_zirconia_as_a_dynamic_compression_window
  • 加载中
图(13)
计量
  • 文章访问数:  5721
  • HTML全文浏览量:  1774
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-02-24
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回