飞机风挡无机玻璃在不同应变率下的力学行为

王振 张超 王银茂 王祥 索涛

王振, 张超, 王银茂, 王祥, 索涛. 飞机风挡无机玻璃在不同应变率下的力学行为[J]. 爆炸与冲击, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186
引用本文: 王振, 张超, 王银茂, 王祥, 索涛. 飞机风挡无机玻璃在不同应变率下的力学行为[J]. 爆炸与冲击, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186
WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186
Citation: WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186

飞机风挡无机玻璃在不同应变率下的力学行为

doi: 10.11883/bzycj-2016-0186
基金项目: 

国家自然科学基金项目 11522220

国家自然科学基金项目 11272267

111引智基地基金项目 B07050

详细信息
    作者简介:

    王振(1992—), 男, 硕士研究生

    通讯作者:

    索涛, suotao@nwpu.edu.cn

  • 中图分类号: O347.1

Mechanical behaviours of aeronautical inorganic glass at different strain rates

  • 摘要: 利用电子万能试验机和改进的分离式Hopkinson压杆测试了飞机风挡无机玻璃在2种准静态应变率(4×10-4、4×10-3 s-1)和2种动态应变率(200、400 s-1)下的单轴压缩力学行为,并利用高速摄像机记录试样破坏过程。实验结果表明:玻璃破坏时表现为典型的脆性材料,随着应变率的提高,材料的压缩强度显著提高。通过观察试样变形过程及变形后的形貌可知,玻璃在压缩载荷下的破坏模式为横向张应力引起的裂纹成核、沿轴向扩展与联结交错导致的失效破坏,并从微裂纹成核扩展和能量耗散的角度对材料的应变率效应做出了合理的解释。
  • 图  1  分离式Hopkinson压杆

    Figure  1.  Split Hopkinson pressure bar

    图  2  准静态实验结果

    Figure  2.  Experimental results of quasi-static compression

    图  3  准静态实验中试样的破坏过程

    Figure  3.  Failure progress of specimens in quasi-static experiment

    图  4  SHPB实验中典型的原始波形

    Figure  4.  Typical original oscilloscope records in SHPB experiment

    图  5  真实应力和真实应变率随真实应变的变化

    Figure  5.  Variation of true stress and true strain rate with true strain

    图  6  高应变率实验时试样内的应力不均匀度

    Figure  6.  Stress inhomogeneity in specimen tested at high strain rates

    图  7  动态实验结果

    Figure  7.  Experimental results of dynamic compression

    图  8  动态压缩过程中试样中的真实应力与时间的关系曲线

    Figure  8.  True stress varied with time for specimens in dynamic compression

    图  9  动态压缩过程中高速摄像的试样图片

    Figure  9.  Images for specimens in dynamic comression corresponding to Fig. 8

    图  10  强度与应变率关系

    Figure  10.  Strain rate sensitivity

    图  11  实验试样破坏形态

    Figure  11.  Fragmentation forms of specimens

  • [1] DE FUSCO R P. United States air force bird strike summary (1986-1987): ADF616023[R].
    [2] PERONI M, SOLOMOS G, PIZZINATO V, et al. Experimental investigation of high strain-rate behaviour of glass[J]. Applied Mechanics and Materials, 2011, 82:63-68. doi: 10.4028/www.scientific.net/AMM.82
    [3] ZHANG X H, ZOU Y, HAO H, et al. Laboratory test on dynamic material properties of annealed float glass[J]. International Journal of Protective Structures, 2012, 3(4):407-430. doi: 10.1260/2041-4196.3.4.407
    [4] ZHANG X H, HAO H, MA G W. Dynamic material model of annealed soda-lime glass[J]. International Journal of Impact Engineering, 2015, 77:108-119. doi: 10.1016/j.ijimpeng.2014.11.016
    [5] XU N, CHEN W N. Rate and surface treatment effect on the strength of boro-glass[C]//Proceedings of 11th International Congress and Exhibition on Experimental and Applied Mechanics, 2008: 122-124. http://www.researchgate.net/publication/267807113_Rate_and_surface_treatment_effect_on_the_strength_of_Boro-glass
    [6] XU N, CHEN W N. Dynamic failure of borosili-cate glass under compression/shear loading experiments[J]. Journal of the American Ceramic Society, 2007, 90(8):2556-2562. doi: 10.1111/jace.2007.90.issue-8
    [7] SUN X, LIU W N. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading[J]. International Journal of Impact Engineering, 2009, 36(2):226-234. doi: 10.1016/j.ijimpeng.2008.01.014
    [8] 李磊, 安二峰, 杨军.浮法玻璃应变率相关的动态本构关系[J].建筑材料学报, 2011, 14(2):202-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb201102011

    LI Lei, AN Erfeng, YANG Jun. Strain rate dependent dynamic constitutive equation of float glass[J]. Journal of Building Materials, 2011, 14(2):202-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb201102011
    [9] 安二峰, 李磊, 杨军.典型玻璃材料冲击力学性能研究[J].北京理工大学学报, 2010, 30(2):127-130. https://www.wenkuxiazai.com/doc/eeefab11ba1aa8114431d95d-2.html

    AN Erfeng, LI Lei, YANG Jun. A study on the impact properties of typical glassy materials[J]. Transactions of Beijing Institude of Technology, 2010, 30(2):127-130. https://www.wenkuxiazai.com/doc/eeefab11ba1aa8114431d95d-2.html
    [10] 郭伟国, 李玉龙, 索涛.应力波基础简明教程[M].西安:西北工业大学出版社, 2007:128-132.
    [11] 宋力, 胡时胜.SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击, 2005, 25(3):207-216. doi: 10.11883/1001-1455(2005)03-0207-10

    SONG Li, HU Shisheng. Stress uniformity and constant strain rrate in shpb test[J]. Explosion and Shock Waves, 2005, 25(3):207-216. doi: 10.11883/1001-1455(2005)03-0207-10
    [12] 王鲁明, 赵坚, 华安增, 等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报, 2003, 22(11):1798-1802. doi: 10.3321/j.issn:1000-6915.2003.11.009

    WANG Luming, ZHAO Jian, HUA Anzeng, et al. Reasearch on SHPB testing technique for brittle material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11):1798-1802. doi: 10.3321/j.issn:1000-6915.2003.11.009
    [13] 李二兵, 谭跃虎, 马聪, 等.三向压力作用下盐岩SHPB试验及动力强度研究[J].岩石力学与工程学报, 2015(增刊2):3742-3749.

    LI Erbing, TAN Yuehu, MA Cong, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(suppl 2):3742-3749.
    [14] 于水生, 卢玉斌, 蔡勇.确定岩石类材料SHPB试验中真实应变率效应的修正方法[J].武汉理工大学学报, 2013(6):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201306020.htm

    YU Shuisheng, LU Yubin, CAI Yong. A correction to determine the real strain-rate effect for rock-like materials based on SHPB testing[J]. Journal of Wuhan University of Technology, 2013(6):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201306020.htm
    [15] 方秦, 洪建, 张锦华, 等.混凝土类材料SHPB实验若干问题探讨[J].工程力学, 2014(5):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201405002&dbname=CJFD&dbcode=CJFQ

    FANG Qin, HONG Jian, ZHANG Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014(5):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201405002&dbname=CJFD&dbcode=CJFQ
    [16] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
  • 加载中
图(11)
计量
  • 文章访问数:  5504
  • HTML全文浏览量:  1942
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 修回日期:  2016-12-05
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回