冰雹撞击下泡沫铝夹芯板的动态响应

张永康 李玉龙 汤忠斌 杨洪 许海

张永康, 李玉龙, 汤忠斌, 杨洪, 许海. 冰雹撞击下泡沫铝夹芯板的动态响应[J]. 爆炸与冲击, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232
引用本文: 张永康, 李玉龙, 汤忠斌, 杨洪, 许海. 冰雹撞击下泡沫铝夹芯板的动态响应[J]. 爆炸与冲击, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232
ZHANG Yongkang, LI Yulong, TANG Zhongbin, YANG Hong, XU Hai. Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact[J]. Explosion And Shock Waves, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232
Citation: ZHANG Yongkang, LI Yulong, TANG Zhongbin, YANG Hong, XU Hai. Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact[J]. Explosion And Shock Waves, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232

冰雹撞击下泡沫铝夹芯板的动态响应

doi: 10.11883/bzycj-2016-0232
基金项目: 

国家自然科学基金项目 11372206

详细信息
    作者简介:

    张永康(1977—),男,博士,副教授, npuzhangyk1@163.com

  • 中图分类号: O344.4;V214.1

Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact

  • 摘要: 在传统单层泡沫夹芯结构的上、下面板之间插入中面板,通过移动中面板的位置,获得了外形尺寸相同、质量相等的5种构型夹芯结构,其上层芯材与芯材总厚度比分别为0:30、10:30、15:30、20:30和30:30。在量纲分析的基础上,应用非线性动力有限元程序LS-DYNA对5种构型夹芯结构进行了冰雹撞击数值分析,研究了中面板位置对夹芯板的能量吸收、能量耗散和动态响应的影响。结果表明:中面板的存在对下层芯材能形成有效的保护;随着中面板位置由上向下移动,夹芯板的抗撞击性能呈现由大到小再增大的态势。数值计算结果对抗冰雹撞击夹芯结构的优化设计具有一定的参考价值。
  • 图  1  冰雹撞击泡沫铝夹芯板分析模型

    Figure  1.  Analytic model of sandwich panelimpacted by hailstone

    图  2  冰雹撞击泡沫铝夹芯板有限元模型

    Figure  2.  Finite element model of sandwichpanel impacted by hailstone

    图  3  2014-T4铝合金平板

    Figure  3.  2014-T4 aluminum platefor experiment

    图  4  2014-T4铝合金的应力应变曲线[15]

    Figure  4.  Stress-strain curve of 2014-T4[15]

    图  5  数值模拟结果和实验结果的比较

    Figure  5.  Comparison between numerical and experimental results

    图  6  泡沫铝芯材的应力应变曲线[3]

    Figure  6.  Stress-strain curve of aluminum foam[3]

    图  7  冰雹撞击过程(v=200 m/s, H1:H=15:30)

    Figure  7.  Impact process of hailstone

    图  8  夹芯结构各部分吸能情况(H1:H=0:30)

    Figure  8.  Energy absorption of sandwich panel

    图  9  夹芯结构各部分吸能情况(H1:H=15:30)

    Figure  9.  Energy absorption of sandwich panel

    图  10  上面板受损破坏图(H1:H=15:30)

    Figure  10.  Images of upper sheets' damage

    图  11  下面板中心点的位移

    Figure  11.  Displacement of central pointof lower sheets

    图  12  下面板中心点的位移幅值随中间面板位置的变化

    Figure  12.  Displacement amplitude of central point oflower sheet versus position of middle sheet

    表  1  夹芯结构在不同撞击速度下的吸能情况

    Table  1.   Energy absorption of sandwich panels at different impact velocities

    H1:H撞击速度/
    (m·s-1)
    面板吸能/J芯材比吸能/(J·kg-1)
    上层下层
    10:30805.6200.2030.07499.32229.965
    12031.1382.9200.407340.229109.739
    16052.60236.9845.530728.125247.094
    20058.85965.63258.3941 091.181497.509
    20:30805.5610.1140.07862.98129.444
    12031.6301.1110.757236.62190.341
    16050.55116.43417.913582.899186.569
    20057.13985.90248.619931.456365.222
    30:30806.540-0.05647.779
    12035.296-0.179175.520
    16051.697-2.980508.573
    20060.143-18.799934.173
    下载: 导出CSV
  • [1] SOUTER R K, EMERSON J B. Summary of available hail literature and the effect of hail on aircraft in flight: NASA Technical Note 2734[R]. Washington, 1952: 1-33.
    [2] ZHU F, ZHAO L M, LU G X, et al. A numerical simulation of the blast impact of square metallic sandwich panels[J]. International Journal of Impact Engineering, 2009, 36(5):687-699. doi: 10.1016/j.ijimpeng.2008.12.004
    [3] HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels[J]. International Journal of Impact Engineering, 2006, 32(7):1127-1144. doi: 10.1016/j.ijimpeng.2004.09.004
    [4] HOU W H, ZHU F, LU G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminum[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055. doi: 10.1016/j.ijimpeng.2010.03.006
    [5] 祖国胤, 刘佳, 李小兵, 等.泡沫铝夹芯板低速冲击性能研究[J].东北大学学报(自然科学版), 2014, 35(11):1583-1587. doi: 10.3969/j.issn.1005-3026.2014.11.015

    ZU Guoyin, LIU Jia, LI Xiaobing, et al. Research on the low-velocity impact performance of aluminum foam sandwich panels[J]. Journal of Northeastern University (Natural Science), 2014, 35(11):1583-1587. doi: 10.3969/j.issn.1005-3026.2014.11.015
    [6] 杨飞, 王志华, 赵隆茂.泡沫铝夹芯板抗侵彻性能的数值研究[J].科学技术与工程, 2011, 11(15):3377-3383. doi: 10.3969/j.issn.1671-1815.2011.15.005

    YANG Fei, WANG Zhihua, ZHAO Longmao. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels[J]. Science Technology and Engineering, 2011, 11(15):3377-3383. doi: 10.3969/j.issn.1671-1815.2011.15.005
    [7] 李志斌, 卢芳云.泡沫铝夹芯板压入和侵彻性能的实验研究[J].振动与冲击, 2015, 34(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/zdycj201504002

    LI Zhibin, LU Fangyun. Tests for indentation and perforation of sandwich panels with aluminium foam core[J]. Journal of Vibration and Shock, 2015, 34(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/zdycj201504002
    [8] 张培文, 李鑫, 王志华, 等.爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响[J].高压物理学报, 2013, 27(5):699-703. doi: 10.11858/gywlxb.2013.05.007

    ZHANG Peiwen, LI Xin, WANG Zhihua, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(5):699-703. doi: 10.11858/gywlxb.2013.05.007
    [9] ANGHILERI M, CASTELLETTI L M L, IMVERNIZZI F, et al. A survey of numerical models for hail impact analysis using explicit finite element codes[J]. International Journal of Impact Engineering, 2005, 31(8):929-944. doi: 10.1016/j.ijimpeng.2004.06.009
    [10] 谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:9-19.
    [11] ASTM F320-1994. Standard test method for hail impact resistance of aerospace transparent enclosures[S]. 1994.
    [12] COMBESCURE A, CHUZEL-MARMOT Y, FABIS J. Experimental study of high-velocity impact and fracture of ice[J]. International Journal of Solids and Structures, 2011, 48(20):2779-790. doi: 10.1016/j.ijsolstr.2011.05.028
    [13] 张振华, 朱锡, 白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtml

    ZHANG Zhenhua, ZHU Xi, BAI Xuefei. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtml
    [14] HAYDUK R J, THOMSON R G. An improved analytical treatment of the denting of thin sheets by hail: NASA Technical Note D-6102[R]. Washington, 1971: 1-36.
    [15] BOYER H E. Atlas of stress-strain curves[M]. 2d ed. ASM International, 2002:311.
    [16] 《中国航空材料手册》编辑委员会.中国航空材料手册:铝合金、镁合金[M].2版.北京:中国标准出版社, 2002:39-83.
    [17] 尚金堂. 新型高强度胞状铝合金Ⅱ及层合梁三点弯曲研究[D]. 南京: 东南大学, 2003. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y560921
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  5902
  • HTML全文浏览量:  1869
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2016-12-19
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回