微小空间内丙烷/空气火焰传播特性与加氢爆燃实验

苏航 蒋利桥 曹海亮 刘秦飞 李言钦 汪小憨 赵黛青

苏航, 蒋利桥, 曹海亮, 刘秦飞, 李言钦, 汪小憨, 赵黛青. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验[J]. 爆炸与冲击, 2018, 38(2): 381-389. doi: 10.11883/bzycj-2016-0198
引用本文: 苏航, 蒋利桥, 曹海亮, 刘秦飞, 李言钦, 汪小憨, 赵黛青. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验[J]. 爆炸与冲击, 2018, 38(2): 381-389. doi: 10.11883/bzycj-2016-0198
SU Hang, JIANG Liqiao, CAO Hailiang, LIU Qinfei, LI Yanqin, WANG Xiaohan, ZHAO Daiqing. Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber[J]. Explosion And Shock Waves, 2018, 38(2): 381-389. doi: 10.11883/bzycj-2016-0198
Citation: SU Hang, JIANG Liqiao, CAO Hailiang, LIU Qinfei, LI Yanqin, WANG Xiaohan, ZHAO Daiqing. Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber[J]. Explosion And Shock Waves, 2018, 38(2): 381-389. doi: 10.11883/bzycj-2016-0198

微小空间内丙烷/空气火焰传播特性与加氢爆燃实验

doi: 10.11883/bzycj-2016-0198
基金项目: 

国家重点基础研究发展计划项目 2014CB239600

国家自然科学基金项目 51336010

国家自然科学基金项目 51176174

广东省科技计划项目 2016A040403095

广东省科技计划项目 2014A050503054

详细信息
    作者简介:

    苏航(1991—),男,博士研究生

  • 中图分类号: O389

Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber

  • 摘要: 在内径150 mm的圆盘狭缝微型燃烧室内,实验探讨了在常温常压下,不同当量比的丙烷/空气预混气以及掺氢的丙烷/空气混合气在电火花点火后向外传播的特性,通过高速摄影方法获得了在狭缝间距为2.0、2.5、3.0、5.0 mm时微燃烧室内的火焰传播形态。实验中观察到火焰传播存在光滑、皱褶和断裂三种火焰锋面形态。当量比的增加和狭缝间距的减小会使火焰更容易发生褶皱。随着火焰的传播,火焰半径逐渐增大,火焰传播速度整体呈下降趋势。火焰传播速度随着间距的减小先增大后减小,在间距3 mm时最大。因为壁面散热的影响,微尺度效应在降低火焰传播速度和增加火焰不稳定性方面具有重要作用。掺入氢气能提高预混气的火焰传播速度,在间距2.5 mm的微燃烧腔中还观察到了爆燃现象。
  • 图  1  圆盘狭缝微尺度燃烧室及其结构尺寸

    Figure  1.  Micro-scale chamber with its structure and size

    图  2  实验系统示意图

    Figure  2.  Schematic graph of test rig

    图  3  处理火焰图片过程

    Figure  3.  Processing of flame propagation photo

    图  4  当量比为1.10时丙烷空气预混气的火焰传播形态演变

    Figure  4.  Flame shape evolution during its propagation of propane/air mixture (φ=1.10)

    图  5  不同当量比下丙烷/空气火焰传播特性(燃烧室间距H=2.0 mm)

    Figure  5.  Flame propagation of propane/air flame in micro-scale chamber (H=2.0 mm)

    图  6  不同当量比下火焰传播半径随时间变化(H=2.0 mm)

    Figure  6.  Flame radius varying with time at different equivalence ratios (H=2.0 mm)

    图  7  不同当量比下火焰传播速度特性(H=2.0 mm)

    Figure  7.  Flame propagation speed varying with radius at different equivalence ratios (H=2.0 mm)

    图  8  不同间距下的丙烷/空气预混火焰传播可燃极限当量比范围

    Figure  8.  Flammable equivalence ratio limits of propane/air flame propagation in different gaps

    图  9  不同间距下丙烷/空气火焰传播形态(φ=1.20)

    Figure  9.  Shapes of propane/air flame propagation in different gaps (φ=1.20)

    图  10  不同间距下的丙烷/空气火焰传播速度特性(φ=1.20)

    Figure  10.  Flame propagation speed of propane/air in different gaps (φ=1.20)

    图  11  当量比为1.00时丙烷/空气掺入氢气火焰传播特性

    Figure  11.  Shapes of flame propagation of C3H8/H2/air mixture (φ=1.00)

    图  12  不同掺氢比下丙烷/空气火焰传播速度特性(φ=1.00)

    Figure  12.  Flame propagation speed of C3H8/H2/air mixture (φ=1.00)

  • [1] MARUTA K. Micro and mesoscale combustion[J]. Proceedings of the Combustion Institute, 2011, 33(1):125-50. doi: 10.1016/j.proci.2010.09.005
    [2] JU Y, MARUTA K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6):669-715. doi: 10.1016/j.pecs.2011.03.001
    [3] DUNN-RANKIN D, LEAL E M, WALTHER D C. Personal power systems[J]. Progress in Energy and Combustion Science, 2005, 31(5/6):422-65. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.1941
    [4] WALTHER D C, AHN J. Advances and challenges in the development of power-generation systems at small scales[J]. Progress in Energy and Combustion Science, 2011, 37(5):583-610. doi: 10.1016/j.pecs.2010.12.002
    [5] XIAO H, HE X, DUAN Q, et al. An investigation of premixed flame propagation in a closed combustion duct with a 90° bend[J]. Applied Energy, 2014, 134:248-256. doi: 10.1016/j.apenergy.2014.07.071
    [6] YANG H, FENG Y, WANG X, et al. OH-PLIF investigation of wall effects on the flame quenching in a slit burner[J]. Proceedings of the Combustion Institute, 2013, 34(2):3379-86. doi: 10.1016/j.proci.2012.07.038
    [7] ZHENG K, YU M, ZHENG L, et al. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts[J]. International Journal of Hydrogen Energy, 2017, 42(8):5426-5438. doi: 10.1016/j.ijhydene.2016.10.106
    [8] 范爱武, 姚洪, 刘伟.微小尺度燃烧[M].北京:科学出版社, 2012:7-16.
    [9] 苏航, 蒋利桥, 曹海亮, 等.微型定容燃烧腔内C2~C4烷烃/空气火焰传播[J].化工学报, 2016, 67(11):4574-4579. http://subject.wanfangdata.com.cn/xstjbg/2011/dl4.html

    SU Hang, JIANG Liqiao, CAO Hailiang, et al. Flame propagation of C2-C4 hydrocarbons/air mixture in a constant-volumemicro-chamber[J]. CIESC Journal, 2016, 67(11):4574-4579. http://subject.wanfangdata.com.cn/xstjbg/2011/dl4.html
    [10] 苏航, 蒋利桥, 曹海亮, 等.微型定容燃烧腔内丙烷/空气火焰传播特性[J].内燃机学报, 2016, 34(3):268-273. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201603011.htm

    SU Hang, JIANG Liqiao, CAO Hailiang, et al. Flame propagation characteristics of propane/air premixed in amicro constant volume chamber[J]. Transactions of CSICE, 2016, 34(3):268-273. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201603011.htm
    [11] JIANG L Q, SU H, YANG H L, et al. Flame propagation characteristics of n-butane/air mixture in a micro gap constant volume chamber[C]//10th Asia-Pacific Conference on Combustion 2015. Beijing, China: Combustion Institute, 2015.
    [12] TANG C, HE J, HUANG Z, et al. Measurements of laminar burning velocities and Markstein lengths of propane-hydrogen-air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(23):7274-7285. doi: 10.1016/j.ijhydene.2008.08.053
    [13] 程关兵, 李俊仙, 李书明, 等.氢气/丙烷/空气预混气体爆轰性能的实验研究[J].爆炸与冲击, 2015, 35(2):249-254. doi: 10.11883/1001-1455(2015)02-0249-06

    CHENG Guanbing, LI Junxian, LI Shuming, et al. An experimental study on detonation characteristics of binary fuels hydrogen/propane/air mixture[J]. Explosion and Shock Waves, 2015, 35(2):249-254. doi: 10.11883/1001-1455(2015)02-0249-06
    [14] WU M H, Wang C Y. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures[J]. Proceedings of the Combustion Institute, 2011, 33(2):2287-2293. doi: 10.1016/j.proci.2010.07.081
    [15] WU M H, Kuo W C. Transition to detonation of an expanding flame ring in a sub-millimeter gap[J]. Combustion & Flame, 2012, 159(3):1366-1368. https://www.researchgate.net/publication/251554542_Transition_to_detonation_of_an_expanding_flame_ring_in_a_sub-millimeter_gap
    [16] MANTON J, VON ELBE G, LEWIS B. Nonisotropic propagation of combustion waves in explosive gas mixtures and the development of cellular flames[J]. The Journal of Chemical Physics, 1952, 20(1):153-157. doi: 10.1063/1.1700159
    [17] POLING B E, PRAUSNITZ J M, O'CONNELL J P. The properties of gases and liquids[M]. New York: Mcgraw-hill, 2001.
    [18] LIAO S Y, JIANG D M, GAO J, et al. Measurements of Markstein numbers and laminar burning velocities for natural gas-air mixtures[J]. Energy & Fuels, 2004, 18(2):316-326. doi: 10.1021/ef034036z
    [19] BRADLEY D, GASKELL P H, GU X J. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study[J]. Combustion and Flame, 1996, 104(1):176-198. https://www.sciencedirect.com/science/article/pii/0010218095001158
    [20] LAW C K, JOMAAS G, BECHTOLD J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment[J]. Proceedings of the Combustion Institute, 2005, 30(1):159-167. doi: 10.1016/j.proci.2004.08.266
    [21] GAMEZO V N, ORAN E S. Flame acceleration in narrow channels: applications for micropropulsion in low-gravity environments[J]. AIAA Journal, 2006, 44(2):329-336. doi: 10.2514/1.16446
    [22] BRADLEY D, SHEPPART C G W, WOOLLEY R, et al. The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions[J]. Combustion & Flame, 2000, 122(1/2):195-209. https://www.sciencedirect.com/science/article/pii/S0010218000001139
    [23] 汤成龙. 氢气/气体燃料层流燃烧特性及液滴碰撞动力学基础研究[D]. 西安: 西安交通大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10698-1012221097.htm
    [24] AFFLECK W S, FISH A. Knock: flame acceleration or spontaneous ignition?[J]. Combustion & Flame, 1968, 12(3):243-252. https://www.researchgate.net/publication/256150618_Knock_Flame_acceleration_or_spontaneous_ignition
  • 加载中
图(12)
计量
  • 文章访问数:  5509
  • HTML全文浏览量:  1381
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2017-03-23
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回