大尺寸密闭容器内天然气的爆炸超压场

樊保龙 白春华 王博 高康华 李斌

樊保龙, 白春华, 王博, 高康华, 李斌. 大尺寸密闭容器内天然气的爆炸超压场[J]. 爆炸与冲击, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191
引用本文: 樊保龙, 白春华, 王博, 高康华, 李斌. 大尺寸密闭容器内天然气的爆炸超压场[J]. 爆炸与冲击, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191
FAN Baolong, BAI Chunhua, WANG Bo, GAO Kanghua, LI Bin. Explosion overpressure field of natural gas in a large-scaled confined vessel[J]. Explosion And Shock Waves, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191
Citation: FAN Baolong, BAI Chunhua, WANG Bo, GAO Kanghua, LI Bin. Explosion overpressure field of natural gas in a large-scaled confined vessel[J]. Explosion And Shock Waves, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191

大尺寸密闭容器内天然气的爆炸超压场

doi: 10.11883/bzycj-2016-0191
基金项目: 

国家自然科学基金项目 51308542

江苏省科技厅计划项目 BE2014735

详细信息
    作者简介:

    樊保龙(1980—), 男, 博士

    通讯作者:

    李斌, libin@njust.edu.cn

  • 中图分类号: O381;TJ5;X932

Explosion overpressure field of natural gas in a large-scaled confined vessel

  • 摘要: 以天然气体积分数在爆炸下限附近的天然气-空气混合物爆炸超压状态场为着眼点,在大尺寸容器中轴向和径向位置布置压力传感器,实时记录天然气体积分数不同的天然气-空气混合物爆炸后的超压发展过程。经过数据处理发现,在天然气爆炸下限附近,存在3种压力波形式且存在前导冲击波和二次发展形成的燃烧波共存的状态。不同天然气体积分数条件下爆炸压力沿容器轴向和径向发展过程存在明显差异,天然气爆炸径向超压变化不明显,轴向超压的发展趋势更适用于天然气爆炸发展过程的描述。
  • 图  1  10 m3爆炸罐结构示意图

    Figure  1.  Schematic structure of 10 m3 explosion vessel

    图  2  罐体内压力传感器布置示意图

    Figure  2.  Layout of pressure transducers in the vessel

    图  3  天然气体积分数不同时的超压时程曲线

    Figure  3.  Overpressure-time curves at different volume fractions of natural gas

    图  4  天然气体积分数为5.5%时压力传感器测得的爆炸超压曲线

    Figure  4.  Overpressure-time curves obtained by the pressure transducers at the volume fraction 5.5% of natural gas

    图  5  天然气燃爆参数沿轴向和径向的发展规律

    Figure  5.  Development of natural gas deflagration parameters along the axis and radial directions

  • [1] ZIPF Jr R K, GAMEZO V N, MOHAMED K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014, 161:2165-2176. doi: 10.1016/j.combustflame.2014.02.002
    [2] INABA Y, NISHIHARA T, GROETHE M A, et al. Study on explosion characteristics of natural gas and methane in semi-open space for the HTTR hydrogen production system[J]. Nuclear Engineering and Design, 2004, 232:111-119. doi: 10.1016/j.nucengdes.2004.04.007
    [3] PEDERSEN H H, TOMLIN G, MIDDHA P, et al. Modelling large-scale vented gas explosion in a twin-compartment enclosure[J]. Journal of Loss Prevention in the Process Industries, 2013, 26:1604-1615. doi: 10.1016/j.jlp.2013.08.001
    [4] LIAO S Y, CHENG Q, JIANG D M, et al. Experimental study of flammability limits of natural gas-air mixture[J]. Journal of Hazardous Materials, 2005, B119:81-84. https://www.sciencedirect.com/science/article/pii/S0304389404005965
    [5] ZHENG J J, HU E J, HUANG Z H, et al. Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends[J]. International Journal of Hydrogen Energy, 2011, 36:11155-11163. doi: 10.1016/j.ijhydene.2011.05.119
    [6] MARIANI A, MORRONE B, UNICH A. Numerical evaluation of internal combustion spark ignition engines performance fuelled with hydrogen-natural gas blends[J]. International Journal of Hydrogen Energy, 2012, 37:2644-2654. doi: 10.1016/j.ijhydene.2011.10.082
    [7] WANG X, ZHANG H G, YAO B F, et al. Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends[J]. Energy, 2012, 38:58-65. doi: 10.1016/j.energy.2011.12.042
    [8] PARVINI M, KORDROSTAMI A. Consequence modeling of explosion at Azad-Shahr CNG refueling station[J]. Journal of Loss Prevention in the Process Industries, 2014, 30:47-54. doi: 10.1016/j.jlp.2014.04.007
    [9] BAJCAR T, CIMERMAN F, SIROK B. Model for quantitative risk assessment on naturally ventilated metering-regulation stations for natural gas[J]. Safety Science, 2014, 64:50-59. doi: 10.1016/j.ssci.2013.11.028
    [10] MA L, CHENG L, LI M C. Quantitative risk analysis of urban natural gas pipeline networks using geographical information systems[J]. Journal of Loss Prevention in the Process Industries, 2013, 26:1183-1192. doi: 10.1016/j.jlp.2013.05.001
    [11] 樊保龙. 大尺度条件下甲烷-空气和煤尘-空气混合及爆炸特性研究[D]. 北京: 北京理工大学, 2015: 13-41. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015029612.htm
  • 加载中
图(5)
计量
  • 文章访问数:  5155
  • HTML全文浏览量:  1908
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2017-03-17
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回