建筑物内气体爆炸效应简化计算研究综述

高康华 赵天辉 孙松 郭强

高康华, 赵天辉, 孙松, 郭强. 建筑物内气体爆炸效应简化计算研究综述[J]. 爆炸与冲击, 2018, 38(2): 443-454. doi: 10.11883/bzycj-2016-0201
引用本文: 高康华, 赵天辉, 孙松, 郭强. 建筑物内气体爆炸效应简化计算研究综述[J]. 爆炸与冲击, 2018, 38(2): 443-454. doi: 10.11883/bzycj-2016-0201
GAO Kanghua, ZHAO Tianhui, SUN Song, GUO Qiang. Simplified calculation methods of gaseous explosion effects in buildings[J]. Explosion And Shock Waves, 2018, 38(2): 443-454. doi: 10.11883/bzycj-2016-0201
Citation: GAO Kanghua, ZHAO Tianhui, SUN Song, GUO Qiang. Simplified calculation methods of gaseous explosion effects in buildings[J]. Explosion And Shock Waves, 2018, 38(2): 443-454. doi: 10.11883/bzycj-2016-0201

建筑物内气体爆炸效应简化计算研究综述

doi: 10.11883/bzycj-2016-0201
基金项目: 

国家自然科学基金项目 51308542

详细信息
    作者简介:

    康华(1983—),男,博士,weikang515@163.com

  • 中图分类号: X932

Simplified calculation methods of gaseous explosion effects in buildings

  • 摘要: 根据当前受限空间内气体爆炸效应的研究成果,综述了建筑物内气体爆炸事故发生时室内压力、结构荷载及动力响应的简化计算方法,内容包括室内气体爆燃压力及结构荷载特点、爆燃压力和结构响应计算模型等。重点阐述了基于实验数据的泄爆压力关联式和反映燃气爆燃主要物理过程的压力简化计算模型,并分析了各类计算模型的适用性、存在问题以及爆燃荷载特征对结构响应的影响;探讨了考虑建筑功能特点影响的工程简化计算模型,对建筑物内爆燃压力计算应重点考虑点火位置、爆室几何特征、火焰燃烧速率、湍流效应以及泄爆结构开启过程等因素;对爆燃事故中结构响应的计算,应考虑爆燃荷载时程、结构初始静载与动载耦合、结构支座边界受载变化等因素。
  • 图  1  爆燃泄放压力时程图[14]

    Figure  1.  Vent deflagration pressure time-history curve[14]

    图  2  室内气体爆燃压力简图

    Figure  2.  Indoor gas deflagration pressures diagram

    图  3  泄爆过程中室内火焰传播[14]

    Figure  3.  Internal flame propagation at various phases of a vented explosion[14]

    图  4  不同点火位置的火焰阵面形状[40]

    Figure  4.  Flame shapes varying with ignition location[40]

    图  5  泄爆压力曲线

    Figure  5.  Venting deflagration pressures

    表  1  气体爆燃泄放影响因素

    Table  1.   Influencing factors of gas venting deflagration

    类别 影响因素
    爆源 燃气种类、组分及浓度
    初始条件 点火前初始压力、温度和内部扰动
    点火情况 点火源位置、点火强度
    空间特性 爆室几何形状、尺寸、布局(单个房间或多个房间相连)
    内部障碍物 形状、尺寸、位置、距离、排列形式
    泄压口 尺寸、面积、位置、布列方式
    泄爆结构 型式(门窗、隔墙、泄爆板等)、单位质量、开启压力
    下载: 导出CSV
  • [1] 赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社, 1996:75, 291.
    [2] 韩永利, 陈龙珠.燃气爆炸事故对住宅建筑的破坏[J].土木建筑与环境工程, 2011, 33(6):120-123, 128. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jian201106021&dbname=CJFD&dbcode=CJFQ

    HAN Yongli, CHEN Longzhu. Failure analysis of residential buildings under the gas explosion accident[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33(6):120-123, 128. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jian201106021&dbname=CJFD&dbcode=CJFQ
    [3] 曲艳东, 吴敏, 王家力, 等.燃气爆炸对砖混建筑的结构破坏研究[J].渤海大学学报(自然科学版), 2013, 34(3):323-327. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzsf201303019&dbname=CJFD&dbcode=CJFQ

    QU Yandong, WU Min, WANG Jiali, et al. Study on the structure failure of the masonry buildings under the flammable gas explosion[J]. Journal of Bohai University (Natural Science Edition), 2013, 34(3):323-327. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzsf201303019&dbname=CJFD&dbcode=CJFQ
    [4] 毕明树, 杨国刚.气体和粉尘爆炸防治工程学[M].北京:化学工业出版社, 2012:13, 46-57.
    [5] 钱七虎, 王明洋.高等防护结构计算理论[M].南京:江苏科学技术出版社, 2009:68-149.
    [6] KRAUTHAMMER T. Modern protective structures (civil and environmental engineering)[M]. Boca Raton: CRC Press, 2008.
    [7] 张奇, 白春华, 梁慧敏.燃烧与爆炸基础[M].北京:北京理工大学出版社, 2007.
    [8] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 549-557.
    [9] 中国土木工程学会.中国土木工程指南[M]. 2版.北京:科学出版社, 2000:1537.
    [10] Accidental actions and background materials for internal explosion: EN 1991-1-7-2006[S]. CEN, 2006.
    [11] NFPA. Standard on explosion protection by deflagration venting: NFPA 68-2013[S]. Quincy, MA: National Fire Protection Association, 2013.
    [12] Pressure venting of dust explosions: VDI 3673-1-2002[S]. Dusseldorf: Verein Deutscher Ingenieure, 2002.
    [13] 中华人民共和国公安部. 建筑设计防火规范: GB 50016-2014[S]. 北京: 中国计划出版社, 2014.
    [14] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions[J]. Combustion and Flame, 1986, 65(1):1-14. http://www.sciencedirect.com/science/article/pii/0010218086900672
    [15] Rodgers S A, Zalosh R. NFPA 68-new gas venting equations[C]//9th Global Congress on Process Safety. San Antonio Texas, 2013: 1-26.
    [16] 王宝兴.声动不稳定燃烧压力峰P3的产生机理和实验验证[J].工程热物理学报, 1988, 9(4):379-383. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb198804019&dbname=CJFD&dbcode=CJFQ

    WANG Baoxing. The buildup mechanism of pressure peak (P3) driven by acoustically instable combustion and its examination tests[J]. Journal of Engineering Thermophysics, 1988, 9(4):379-383. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb198804019&dbname=CJFD&dbcode=CJFQ
    [17] 王宝兴, 李振彦.可燃气体爆炸泄压过程中声动不稳定燃烧压力峰减弱方法的研究[J].爆炸与冲击, 1989, 9(2):130-136. http://www.bzycj.cn/CN/abstract/abstract10881.shtml

    WANG Baoxing, LI Zhenyan. On the elimination measures of pressure peak driven by acoustically unstable combustion in vented gas explosions[J]. Explosion and Shock Waves, 1989, 9(2):130-136. http://www.bzycj.cn/CN/abstract/abstract10881.shtml
    [18] MURRAY J S, VINCENT H Y T, BRIAN C. Analysis of results from large scale hydrocarbon gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(2):167-173. doi: 10.1016/S0950-4230(99)00020-0
    [19] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012: 48-50. http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017899.htm
    [20] 韩永利, 陈洋, 陈龙珠.基于LS-DYNA的墙体抗燃气爆炸能力数值分析[J].防灾减灾工程学报, 2010, 30(3):298-302. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxk201003013&dbname=CJFD&dbcode=CJFQ

    HAN Yongli, CHEN Yang, CHEN Longzhu. Simulation on anti-blast ability of masonry wall under gas explosion load based on LS-DYNA[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(3):298-302. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxk201003013&dbname=CJFD&dbcode=CJFQ
    [21] LOWESMITH B J, MUMBY C, HANKINSOM G, et al. Vented confined explosions involving methane/hydrogen mixtures[C]//3rd ICHS, 2009: 16-18.
    [22] BJERKETVEDT D, BAKKE J R, VAN WINGERDEN K. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, 52(1):1-150. doi: 10.1016/S0304-3894(97)81620-2
    [23] 李岳, 王淑兰, 丁信伟, 等.气体爆炸泄放计算方法比较与实验[J].石油化工设备, 2003, 14(1):6-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sysb200301003&dbname=CJFD&dbcode=CJFQ

    LI Yue, WANG Shulan, DING Xinwei, et al. Comparison of calculation methods and experiment for venting of gas explosion[J]. Petro-Chemical Equipment, 2003, 14(1):6-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sysb200301003&dbname=CJFD&dbcode=CJFQ
    [24] RAZUS D, KRAUSE U. Comparison of empirical and semi-empirical calculation methods for venting of gas explosions[J]. Fire Safety Journal, 2001, 36(1):1-23. doi: 10.1016/S0379-7112(00)00049-7
    [25] PARK D J, LEE Y S. A comparison on predictive models of gas explosions[J]. Korean Journal of Chemical Engineering, 2009, 26(2):313-323. doi: 10.1007/s11814-009-0054-5
    [26] SUSTEK J, JANOVSKY B. Comparison of empirical and semi-empirical equations for vented gas explosion with experimental data[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1549-1557. doi: 10.1016/j.jlp.2013.08.014
    [27] MOLKOV V, BRAGIN M. Hydrogen-air deflagrations:Vent sizing correlation for low-strength equipment and buildings[J]. International Journal of Hydrogen Energy, 2015, 40(2):1256-1266. doi: 10.1016/j.ijhydene.2014.11.067
    [28] РАСТОРГУЕВ Б С, ПЛОТНИКОВ А И, ХУСНУТДИНОВ Д З. Проектирование зданий исооружений приаварийных взрывных воздействиях. Учебное пособие[M]. Издательство Ассоциации Строительных Вузов, 2007.
    [29] DRAGOSAVIC M. Structural measures against natural-gas explosion in high-rise blocks of flats[Z]. Heron, 1973.
    [30] SUSTEK J. Vypocet maximalniho pretlaku pri ventilovanem vybuchu plynuve 3D geometrii[D]. Diplomova prace, Pardubice: KTTV, 2006.
    [31] JANOVSKY B, SELESOVSKY P, HORKEL J, et al. Vented confined explosions in stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in Process Industries, 2006, 19(2/3):280-287. http://www.sciencedirect.com/science/article/pii/S0950423005001439
    [32] RASBASH D J, DRYSDALE D D, KEMP D. Design of an explosion relief system for a building handling liquefied fuel gas[C]//Symposium Series on Process Industry Hazards. London: Institution of Chemical Engineers, 1976: 145-156.
    [33] BUTLIN R N, TONKIN P S. Pressures produced by gas explosions in a vented compartment: 1019[R]. Borehamwood: Fire Research Station, 1974: 3-5.
    [34] BANGASH M Y H. Shock, impact and explosion[M]. Berlin Heidelberg: Springer-Verlag, 2009:691.
    [35] KIM Joon Hyun, KIM Joo-Hyun. Simplified modeling of deflagration in vessels[J]. KSME International Journal, 2004, 18(8):1338-1348. doi: 10.1007/BF02984248
    [36] 谷祖虹. 处理可燃气体设备安全设计与软件开发[D]. 大连: 大连理工大学, 2006: 22-57. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006068291.htm
    [37] KOBIERA A, KINDRACKI J, ZYDAK P, et al. A new phenomenological model of gas explosion based on characteristics of flame surface[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3):271-280. doi: 10.1016/j.jlp.2007.04.023
    [38] HAN Yongli, CHEN Longzhu. Mechanical model of domestic gas explosion load[J]. Transactions of Tianjin University, 2008, 14(6):434-440. doi: 10.1007/s12209-008-0075-x
    [39] 孙敖. 建筑物内可燃气体爆燃泄放研究[D]. 南京: 解放军理工大学, 2013.
    [40] UGARTE O J, AKKERMAN V, RANGWALA A S. A computational platform for gas explosion venting[J]. Process Safety and Environmental Protection, 2016, 99:167-174. doi: 10.1016/j.psep.2015.11.001
    [41] MOLKOV V V. Explosions in buildings: Modeling and interpretation of real accidents[J]. Fire Safety Journal, 1999, 33(1):45-56. doi: 10.1016/S0379-7112(99)00003-X
    [42] PUTTOCK J S, YARDLEY M R, CRESSWELL T M. Prediction of vapour cloud explosions using the SCOPE model[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3):419-430. http://www.sciencedirect.com/science/article/pii/S0950423099000455
    [43] CATLIN C A. CLICHÉ: A generally applicable and practicable offshore explosion model[J]. Process Safety and Environmental Protection, 1990, 68(B):245-253. http://www.icheme.org/~/media/Documents/Subject%20Groups/Safety_Loss_Prevention/Hazards%20Archive/S122%20-%20Piper%20Alpha%20Lessons/S122-04.pdf
    [44] 王宝兴, 龚延晖, 张银花, 等.超长建筑物爆炸泄压特性的试验研究[J].工程热物理学报, 1998, 19(5):652-656. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb199805026&dbname=CJFD&dbcode=CJFQ

    WANG Baoxing, GONG Yanhui, ZHANG Yinhua, et al. The experimental studies on deflagration venting from elongnated building[J]. Journal of Engineering Thermophysics, 1998, 19(5):652-656. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb199805026&dbname=CJFD&dbcode=CJFQ
    [45] LEA C J. A review of the state-of-the-art in gas explosion modeling[R]. Buxton: Fire and Explosion Group, 2002.
    [46] 孙明波, 白雪松, 王振国.湍流燃烧火焰面模式理论及应用[M].北京:科学出版社, 2014:5-15.
    [47] 吴冬辉, 王淑兰.气体燃爆泄放过程中燃烧速率的评价[J].化学工业与工程技术, 2005, 26(3):4-7. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hxgj200503001&dbname=CJFD&dbcode=CJFQ

    WU Donghui, WANG Shulan. The evaluation of combustion speed in gas explosion venting process[J]. Journal of Chemical Industry and Engineering, 2005, 26(3):4-7. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hxgj200503001&dbname=CJFD&dbcode=CJFQ
    [48] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):213-221. doi: 10.1016/S0950-4230(00)00024-3
    [49] 齐峰. 障碍物对甲烷-煤粉爆炸强度影响的实验研究[D]. 大连: 大连理工大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10141-2008068887.htm

    QI Feng. Experimental study on the effect of obstruction on methane-coal dust explosion intensity[D]. Dalian: Dalian University of Technology, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10141-2008068887.htm
    [50] 毕明树, 董呈杰. 密闭空间障碍物条件下甲烷-空气爆炸实验[C]//中国职业安全健康协会2009年学术年会论文集. 北京: 煤炭工业出版社, 2009.
    [51] FAIRWEATHER M, HARGRAVE G K, IBRAHIM S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4):504-518. doi: 10.1016/S0010-2180(98)00055-8
    [52] 应展烽. 预混火焰与障碍物相互作用的研究[D]. 南京: 南京理工大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10288-2009197674.htm

    YING Zhanfeng. Research on the interact between premixed flame and obstruction[D]. Nanjing: Nanjing University of Science and Technology, 2008. http://cdmd.cnki.com.cn/article/cdmd-10288-2009197674.htm
    [53] 李帆. 管道内障碍物对可燃气体燃爆影响的仿真研究[D]. 太原: 中北大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10110-2009170865.htm

    LI Fan. Numerical simulation of combustive gas explosion in the horizontal pipeline build-in obstacles[D]. Taiyuan: North University of China, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10110-2009170865.htm
    [54] ZALOSH R G. Explosion venting data and modeling literature review[R]. Quincy, MA: Fire Protection Research Foundation, 2008.
    [55] MOLKOV V V, EBER R M, GRIGORASH A V, et al. Vented gaseous deflagrations: Modelling of translating inertial vent covers[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(5):395-402. doi: 10.1016/S0950-4230(03)00066-4
    [56] MOLKOV V V, GRIGORASH A V, EBER R M, et al. Vented gaseous deflagrations: Modelling of hinged inertial vent covers[J]. Journal of Hazardous Materials, 2004(116):1-10. http://www.sciencedirect.com/science/article/pii/S0304389404004558
    [57] HÖHST S, LEUCKEL W. On the effect of venting large vessels with mass inert panels[J]. Journal of Loss Prevention in the Process Industrries, 1998, 11(2):89-97. doi: 10.1016/S0950-4230(97)00031-4
    [58] 高康华, 王明洋, 程志军, 等.泄爆板开启规律及对室内爆燃压力的影响[J].深圳大学学报:理工版, 2011, 28(6):529-534. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=szdl201106012&dbname=CJFD&dbcode=CJFQ

    GAO Kanghua, WANG Mingyang, CHENG Zhijun, et al. Open-rules of vent closures and its effect on internal deflagration pressure[J]. Journal of Shenzhen University: Science and Engineering, 2011, 28(6):529-534. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=szdl201106012&dbname=CJFD&dbcode=CJFQ
    [59] 中国建筑标准设计研究院.国家建筑标准设计图集-14J938:抗爆、泄爆门窗及屋盖、墙体建筑构造[M].北京:中国计划出版社, 2014.
    [60] 曾清樵.建筑防爆设计[M].北京:中国建筑工业出版社, 1986.
    [61] ОРПОВ Г Г. Легкосбрасываемые конструкции для взрывозащиты промышленных зданий[M]. Москва: Стройиздат, 1987.
    [62] 叶宏. 民用燃气爆炸及对建筑结构影响的分析与研究[D]. 北京: 清华大学, 1994. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y167494

    YE Hong. Analysis and research of gas explosion effect on structure[D]. Beijing: Tsinghua University, 1994. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y167494
    [63] 郭文军, 崔京浩, 江见鲸.燃爆作用下板的动力响应分析[J].工程力学, 1999, 16(增刊):505-509. http://www.cqvip.com/QK/95324X/1999A03/3831963.html

    GUO Wenjun, CUI Jinghao, JIANG Jianjing. The dynamic response analysis of board under gas explosion load[J]. Engineer Mechanical, 1999, 16(suppl):505-509. http://www.cqvip.com/QK/95324X/1999A03/3831963.html
    [64] BEAK M, COLWELL S A, CROWHURST D, et al. The behavior of masonry and concrete panels under explosion and static loading[R]. Bucknalls Lane, Watford: Building Research Establishment, 1994.
    [65] 方秦, 柳锦春.地下防护结构[M].北京:中国水利水电出版社, 2010:195.
    [66] ПИЛЮГИН Л П. Oбеспечение взрывоустойчивости зданий спMоЩьЮ предохранительных конструкций[M]. Пожарная Безопасность Инаука, 2000.
    [67] KANG K Y, CHOI K H, CHOI J W, et al. Dynamic response of structural models according to characteristics of gas explosion on topside platform[J]. Ocean Engineering, 2016, 113:174-190. doi: 10.1016/j.oceaneng.2015.12.043
    [68] BAKER W E, COX P A, WESTINE P S. 爆炸危险性及其评估[M]. 张国顺, 文以民, 刘定吉, 译. 北京: 群众出版社, 1988.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  5223
  • HTML全文浏览量:  2110
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2016-11-08
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回