基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析

朱秀云 潘蓉 林皋 李亮

朱秀云, 潘蓉, 林皋, 李亮. 基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析[J]. 爆炸与冲击, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07
引用本文: 朱秀云, 潘蓉, 林皋, 李亮. 基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析[J]. 爆炸与冲击, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07
Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA[J]. Explosion And Shock Waves, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07
Citation: Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA[J]. Explosion And Shock Waves, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07

基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析

doi: 10.11883/1001-1455(2015)02-0222-07
基金项目: 国家科技重大专项项目(2011ZX06002-10)
详细信息
    作者简介:

    朱秀云(1985—), 女, 博士研究生, 工程师

    通讯作者:

    潘蓉, panrong@chinansc.cn

  • 中图分类号: O347.3; TL371

FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA

  • 摘要: 运用经典的显式非线性动力分析软件ANSYS/LS-DYNA,分析了1/7.5缩尺飞机模型撞击钢板混凝土墙的冲击实验。选用两种不同的混凝土材料本构模型(Winfrith模型、CSCM模型)模拟混凝土的非线性破坏过程,将钢板混凝土墙的破坏模式以及飞机模型的残余速度等与实验结果进行了对比。结果表明,有限元分析结果与实验吻合较好,且Winfrith材料模型能够更好地模拟混凝土的大应变、高应变率的非线性性能,验证了钢板混凝土墙和飞机材料本构模型的选取以及整个分析方法的适用性和有效性。
  • 图  1  半钢板混凝土墙(HSC80)有限元模型

    Figure  1.  FEM model of the HSC80 wall

    图  2  1/7.5缩尺飞机模型有限元模型

    Figure  2.  FEM model of the 1/7.5 scale aircraft

    图  3  引擎的速度曲线

    Figure  3.  Velocity curves of engine

    图  4  飞机模型和FSC60墙的破坏过程

    Figure  4.  Fracture process of aircraft model and FSC60 wall

    图  5  FSC60墙的数值模拟结果

    Figure  5.  The simulation analysis results of FSC60 wall

    图  6  FSC60墙的实验结果

    Figure  6.  The impact experiment results of FSC60 wall

    图  7  飞机模型和FSC80墙的破坏过程

    Figure  7.  Fracture process of aircraft model and FSC80 wall

    图  8  FSC80墙的数值模拟结果

    Figure  8.  The simulation analysis results of FSC80 wall

    图  9  FSC80墙的实验结果

    Figure  9.  The impact experiment results of FSC80 wall

    图  10  FSC80墙冲击实验中引擎破坏形式

    Figure  10.  Damage of engine model in FSC80 impact experiment

    图  11  FSC80墙背部钢板的位移曲线

    Figure  11.  Displacement curves of rear-face steel plate of FSC80 wall

    图  12  飞机模型和HSC80墙的破坏过程

    Figure  12.  Fracture process of aircraft model and HSC80 wall

    图  13  HSC80墙的数值模拟结果

    Figure  13.  The simulation analysis results of HSC80 wall

    图  14  HSC80墙的实验结果

    Figure  14.  The impact experiment results of HSC80 wall

    图  15  HSC80墙背部钢板的位移曲线

    Figure  15.  Displacement curves of rear-face steel plate of HSC80 wall

    表  1  数值模拟与实验结果的比较

    Table  1.   The comparison of numerical simulation results and experimental results

    墙类型方法db/cmvr/(m·s-1)破坏类型
    最大残余引擎碎片
    实验[12]--2258穿透
    FSC60Winfrith模型--2859穿透
    CSCM模型--3651穿透
    离散元法[10]--4065穿透
    实验[12]--4053穿透
    HSC60Winfrith模型--4251穿透
    CSCM模型--3547穿透
    实验[12]4.33.000未穿透
    FSC80Winfrith模型5.94.600未穿透
    CSCM模型3.22.500未穿透
    离散元法[10]4.2-00未穿透
    实验[12]7.87.000未穿透
    HSC80Winfrith模型7.45.200未穿透
    CSCM模型2.92.600未穿透
    离散元法[10]8.6-00未穿透
    下载: 导出CSV
  • [1] US Nuclear Regulatory Commission. 10 CFR 50.150 Aircraft impact assessment[S]. Washington, DC: US Nuclear Regulatory Commission, 2009.
    [2] US Nuclear Regulatory Commission. RG 1.217 Guidance for the assessment of beyond-design-basis aircraft impacts[S]. Washington, DC: US Nuclear Regulatory Commission, 2011.
    [3] 中国国家核安全局. HAD101/04核电厂厂址选择的外部人为事件[S]. 1989.
    [4] 中国国家核安全局. HAD101/05与核电厂设计有关的外部人为事件[S]. 1989.
    [5] Quan X, Birnbaum N K, Cowler M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach[C]//5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003.
    [6] Heckötter C, Sievers J, Tarallo F, et al. Comparative analyses of impact tests with reinforced concrete slabs[C]//Towards Convergence of Technical Nuclear Safety Practices in Europe. 2010.
    [7] Abu-Odeh A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA[C]//10th International LS-DYNA Users Conference. 2008.
    [8] Kong S Y, Remennikov A M. Numerical simulation of the response of non-composite steel-concrete-steel sandwich panels to impact loading[J]. Australian Journal of Structural Engineering, 2012, 12(3): 211-223. doi: 10.7158/13287982.2011.11465093
    [9] Morikawa H, Mizuno J, Momma T, et al. Scale model tests of multiple barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
    [10] Mizuno J, Koshika N, Morikawa H, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
    [11] Tsubota H, Koshika N, Mizuno J, et al. Scale model tests of multiple barriers against aircraft impact: Part 1. Experimental program and test results[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
    [12] Mizuno J, Koshika N, Sawamoto Y, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 1: Test program and results[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
    [13] Hallquist J Q. LS-DYNA keyword user's manual, Revision 971[M]. Livermore Software Technology Corporation, 2007.
    [14] Mullapudi T R S, Summers P, Moon H. Impact analysis of steel plated concrete wall[C]//Structures Congress 2012. ASCE, 2012: 1881-1893.
    [15] Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12): 1241-1249. http://www.sciencedirect.com/science/article/pii/S0029549306005875
    [16] 朱秀云, 潘蓉, 林皋.基于荷载时程分析法的钢筋混凝土和钢板混凝土墙的冲击响应对比分析[J].振动与冲击, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546

    Zhu Xiu-yun, Pan Rong, Lin Gao. Comparative analysis of impact response with reinforced concrete and steel plate concrete walls based on force time-history analysis method[J]. Journal of Vibration and Shock, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546
    [17] NEI07-13 Rev 8P Methodology for performing aircraft impact assessments for new plant designs[S]. 2011.
    [18] Wu You-cai, Crawford J E, Magallanes J M. Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference. 2012.
    [19] Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  4975
  • HTML全文浏览量:  605
  • PDF下载量:  1102
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-29
  • 修回日期:  2014-02-12
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回