舰艇新型宏观负泊松比效应蜂窝舷侧防护结构

杨德庆 马涛 张梗林

杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构[J]. 爆炸与冲击, 2015, 35(2): 243-248. doi: 10.11883/1001-1455(2015)02-0243-06
引用本文: 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构[J]. 爆炸与冲击, 2015, 35(2): 243-248. doi: 10.11883/1001-1455(2015)02-0243-06
Yang De-qing, Ma Tao, Zhang Geng-lin. A novel auxetic broadside defensive structure for naval ships[J]. Explosion And Shock Waves, 2015, 35(2): 243-248. doi: 10.11883/1001-1455(2015)02-0243-06
Citation: Yang De-qing, Ma Tao, Zhang Geng-lin. A novel auxetic broadside defensive structure for naval ships[J]. Explosion And Shock Waves, 2015, 35(2): 243-248. doi: 10.11883/1001-1455(2015)02-0243-06

舰艇新型宏观负泊松比效应蜂窝舷侧防护结构

doi: 10.11883/1001-1455(2015)02-0243-06
基金项目: 国家自然科学基金项目(11072149);高等学校博士学科点专项科研基金项目(20100073110011)
详细信息
    作者简介:

    杨德庆(1968—), 男, 教授, yangdq@sjtu.edu.cn

  • 中图分类号: O342;U661.44;TH132.41

A novel auxetic broadside defensive structure for naval ships

  • 摘要: 提出一种具有宏观负泊松比效应的新型蜂窝舷侧防护结构,通过对负泊松比效应蜂窝胞元特殊结构构型设计,实现中等弹速下良好抗爆抗冲击性能。利用有限元动力学分析软件,研究鱼雷或导弹水下对舷侧防护结构的撞击侵入和穿透过程,对比研究了不同蜂窝构型、材料、胞元尺寸和胞壁厚度对舷侧结构抗冲击性能的影响。结果表明,蜂窝防护结构具有良好的抗冲击性能,负泊松比蜂窝构型较正泊松比蜂窝构型抗冲击性能更优。
  • 图  1  负泊松比蜂窝结构舷侧防护几何模型及有限元模型

    Figure  1.  Geometry and FEM model of defensive structure with re-entrant honeycomb

    图  2  正、负泊松比效应蜂窝夹芯舷侧防护结构(局部)示意图

    Figure  2.  Defensive structure with honeycomb and re-entrant honeycomb (local)

    图  3  正、负泊松比蜂窝胞元尺寸示意图

    Figure  3.  Size of honeycomb cell and re-entrant honeycomb cell

    图  4  3种舷侧防护结构破损示意图

    Figure  4.  Crevasse shapes of three kinds of defensive structures

    图  5  不同胞元层数下舷侧结构破损图

    Figure  5.  Crevasse shapes of auxetic defensive structure with different layers of honeycomb cell

    表  1  材料参数

    Table  1.   Material parameters of 45 steel, TC4 and 921 steel

    材料基本参数
    E/GPaνρ/(kg·m-3)Tm/KTr/K
    45钢2000.307 8201 783293
    TC41130.334 5101 920293
    921钢2000.307 8301 763293
    材料Johnson-Cook本构模型参数
    A/MPaB/MPaCnm
    45钢5073200.0640.2801.06
    TC41 1302500.0320.2001.00
    921钢8983560.0220.5861.05
    材料Johnson-Cook失效模型参数
    D1D2D3D4D5
    45钢0.10.761.570.005-0.84
    TC400.330.480.0043.90
    921钢0.82.1000.0020.60
    下载: 导出CSV

    表  2  弹体剩余速度

    Table  2.   Residual velocity of missiles

    蜂窝构型h/mm蜂窝材料vr/(m·s-1)
    v0=80 m·s-1v0=200 m·s-1v0=300 m·s-1
    545钢0131249
    845钢0110239
    正泊松比1045钢090236
    5921钢074236
    5TC40101253
    545钢0125241
    845钢0103227
    负泊松比1045钢086208
    5921钢071240
    5TC4080252
    常规防护结构545钢0128231
    下载: 导出CSV

    表  3  不同胞元层数下弹体剩余速度对比

    Table  3.   Residual velocity of missiles with different cell layers

    Nvr/(m·s-1)
    v0=80 m·s-1v0=200 m·s-1v0=300 m·s-1
    200254
    300253
    5029.5258
    下载: 导出CSV
  • [1] Balandin D V, Bolotnik N N, Pilkey W D. Optimal protection from impact, shock and vibration[M]. Amsterdam: Gordon and Breach Science Publishers, 1998.
    [2] 朱锡, 张振华, 刘润泉, 等.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004, 24(2): 134-139. http://www.bzycj.cn/article/id/9932

    Zhu Xi, Zhang Zhen-hua, Liu Rui-quan, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock Waves, 2004, 24(2): 134-139. http://www.bzycj.cn/article/id/9932
    [3] 杜志鹏, 李晓彬, 夏利娟, 等.反舰导弹攻击舰船舷侧防护结构过程数值仿真[J].哈尔滨工程大学学报, 2006, 27(4): 484-487.

    Du Zhi-peng, Li Xiao-bin, Xia Li-Juan, et al. Numerical simulation of anti-ship missile attack warship broadside process[J]. Journal of Harbin Engineering University, 2006, 27(6): 484-487.
    [4] 姚熊亮, 侯明亮, 李青, 等. Y型舷侧结构抗冲击性能数值仿真实验研究[J].哈尔滨工程大学学报, 2006, 27(6): 796-801. http://www.cqvip.com/Main/Detail.aspx?id=23531357

    Yao Xiong-liang, Hou Ming-liang, Li Qing, et al. Numerical simulation research on counter-impingement capability Y-shape shipboard side structure[J]. Journal of Harbin Engineering University, 2006, 27(6): 796-801. http://www.cqvip.com/Main/Detail.aspx?id=23531357
    [5] 李青, 吴广明.水面舰艇舷侧抗冲击防护结构形式初探[J].中国舰船研究, 2008, 3(3): 26-29. http://d.wanfangdata.com.cn/Periodical/zgjcyj200803006
    [6] 张延昌, 王自力, 顾金兰, 等.夹层板在舰船舷侧防护结构中的应用[J].中国造船, 2009, 50(4): 36-44. http://d.wanfangdata.com.cn/Periodical/zgzc200904006

    Zhang Yan-chang, Wang Zi-li, Gu Jin-lan, et al. Application of sandwich panel in anti-shock design of warship's side structure[J]. Shipbuilding of China, 2009, 50(4): 36-44. http://d.wanfangdata.com.cn/Periodical/zgzc200904006
    [7] Lorna J G, Michael F A. Cellular solids: Structure and properties[M]. Cambridge University Press, 2005.
    [8] Klintworth J W, Stronge W J. Plane punch indentation of a ductile honeycomb[J]. International Journal of Mechanical Sciences, 1989, 31(5): 359-378. https://www.sciencedirect.com/science/article/pii/002074038990060X
    [9] Kim T, Zhao C Y, Lu T J, et al. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials, 2004, 36(8): 767-780. https://www.sciencedirect.com/science/article/pii/S0167663603001406
    [10] Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Computers and Structures, 1998, 68(4): 343-367. https://www.sciencedirect.com/science/article/abs/pii/S0045794998000674
    [11] Alderson A. A triumph of lateral thought[J]. Chemistry & Industry, 1999, 17: 384-391. http://web.mit.edu/course/3/3.91/www/slides/Auxetic_Foams.pdf
    [12] 赵海鸥. LS-DYNA动力分析指南[M].北京: 兵器工业出版社, 2003.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  4864
  • HTML全文浏览量:  577
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-23
  • 修回日期:  2014-01-28
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回