高浓度氩气稀释气体爆轰波临界管径和临界间距关系

喻健良 高远 闫兴清 高伟

喻健良, 高远, 闫兴清, 高伟. 高浓度氩气稀释气体爆轰波临界管径和临界间距关系[J]. 爆炸与冲击, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06
引用本文: 喻健良, 高远, 闫兴清, 高伟. 高浓度氩气稀释气体爆轰波临界管径和临界间距关系[J]. 爆炸与冲击, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06
Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei. Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures[J]. Explosion And Shock Waves, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06
Citation: Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei. Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures[J]. Explosion And Shock Waves, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06

高浓度氩气稀释气体爆轰波临界管径和临界间距关系

doi: 10.11883/1001-1455(2015)04-0603-06
基金项目: 国家自然科学基金项目(50974027)
详细信息
    作者简介:

    喻健良(1963-), 男, 博士, 教授, yujianliang@dl.cn

  • 中图分类号: O382

Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures

  • 摘要: 建立圆管及环形管道系统研究临近极限下爆轰波在管道内传播失效机理。选用C2H2+2.5O2+70%Ar气体,采用光纤探针测量爆轰波在管道内传播速度,用烟迹法记录管道内爆轰波胞格结构。结果表明:初始压力远大于爆轰极限压力时,爆轰波在管道内以稳定速度传播;随着初始压力的减小,爆轰波速度逐渐降低;当初始压力一定时,爆轰波速度随着管道尺寸的减小而逐渐减小;当初始压力达到临界压力时,爆轰波在进入到管道内后其速度会逐渐衰减直至爆轰波完全失效。对于不同几何尺寸的圆管与环管,通过引入无量纲参数d/λw /λ(d为圆管管径,w为环管间距,λ为爆轰胞格尺寸)得出,爆轰波在管道内传播的临界圆管直径为环形间距的2倍,与理论模型结果相吻合,验证了稳态气体基于爆轰波波面曲率的失效机理。
  • 图  1  实验装置

    Figure  1.  Schematic of the experimental apparatus

    图  2  圆管内爆轰波传播

    Figure  2.  Propagation of detonation wave in the round tube

    图  3  环管内爆轰波传播

    Figure  3.  Propagation of detonation wave in the annular channel

    图  4  爆轰速度随着初始压力的变化

    Figure  4.  Detonation velocity versus initial pressure

    图  5  爆轰胞格结构随初始压力的变化(d=50.8 mm)

    Figure  5.  Stuctures of the detonation cellulars vary with the initial pressure (d=50.8 mm)

    图  6  爆轰胞格尺寸与初始压力的关系

    Figure  6.  Detonation cellular size versus initial pressure

    表  1  圆管几何尺寸

    Table  1.   Round tube size

    d/mmL/mmt/mm
    1.52 4380.8
    3.22 4381.6
    12.74 1183.2
    31.74 1183.2
    50.83 0483.2
    下载: 导出CSV

    表  2  环管几何尺寸

    Table  2.   Annular channel size

    w/mmL/mmt/mm
    3.21 8283.2
    5.91 8283.2
    下载: 导出CSV

    表  3  圆管实验结果

    Table  3.   Experimental results of round tubes

    d/mmpc/kPaλdc
    50.81.1306.470.166
    31.71.5202.510.157
    12.73.273.600.173
    3.29.816.500.194
    1.520.06.360.236
    下载: 导出CSV

    表  4  环管实验结果

    Table  4.   Experimental results of annular channels

    w/mmpc/kPaλwc
    5.93.565.300.0903
    3.26.031.790.1006
    下载: 导出CSV

    表  5  圆管ZND化学反应区长度

    Table  5.   ZND reaction zone length of round tubes

    d/mmpc/kPaΔZND/mmdc/ΔZND
    50.81.11.81827.94
    31.71.51.27324.94
    12.73.20.55322.96
    3.29.80.14821.54
    1.520.00.06523.08
    下载: 导出CSV

    表  6  环管ZND化学反应区长度

    Table  6.   ZND reaction zone length of annular channels

    w/mmpc/kPaΔZND/mmwc/ΔZND
    5.93.50.48212.2
    3.26.00.25912.3
    下载: 导出CSV
  • [1] Lee J H S. The detonation phenomenon[M]. Cambrige, UK: Cambridge University Press, 2008.
    [2] Dupre G, Peraldi O, Lee J H S, et al. Propagation of detonation waves in an acoustic absorbing-walled tube[J]. Progress in Astronautics and Aeronautics, 1988, 114: 248-263. doi: 10.2514/5.9781600865886.0248.0263
    [3] Teodoczyk A, Lee J H S. Detonation attenuation by foams and wire meshes lining the walls[J]. Shock Waves, 1995, 4(4): 225-236. doi: 10.1007/BF01414988
    [4] Raduledscu M I, Lee J H S. The failure mechanism of gaseous detonations: Experiments in porous wall tubes[J]. Combustion and Flame, 2002, 131: 29-46. http://www.sciencedirect.com/science/article/pii/S0010218002003905
    [5] Zeldovich Y B. On the theory of the propagation of detonation in gaseous systems[R]. Soviet Union: Soviet Physics-JETP, 1940.
    [6] Lee J J, Dupre G, Knystautas R, et al. Doppler interferometer study of unstable detonations[J]. Shock Waves, 1995, 5(3): 175-181.
    [7] Camargo A, Ng H D, Chao J, et al. Propagation of near-limit gaseous detonations in small diameter tubes[J]. Shock Waves, 2010, 20(6): 499-508. doi: 10.1007/s00193-010-0253-3
    [8] Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes[D]. Montreal, Canada: McGill University, 2003.
    [9] Radulescu M I, Ng H D, Lee J H S, et al. The effect of argon dilution on the stability of acetylene-oxygen detonations[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2825-2831. https://www.sciencedirect.com/science/article/pii/S1540748902803455
    [10] Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modeling, 2005, 9: 385-401. doi: 10.1080/13647830500307758
    [11] Chao J, Ng H D, Lee J H S. Detonation limits in thin annular channels[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2349-2354. http://www.sciencedirect.com/science/article/pii/S1540748908003660
    [12] Fay J A. Two-dimensional gaseous detonations: Velocity deficit[J]. Physics of Fluids, 1959, 2(3): 283-289. doi: 10.1063/1.1705924
    [13] Meredith J, Ng H D, Lee J H S. Detonation diffraction from an annular channel[J]. Shock Waves, 2010, 20(6): 449-455. doi: 10.1007/s00193-010-0256-0
    [14] Mcbride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications[R]. NASA, 1996.
    [15] Kee R J, Rupley F M, Millerja. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Sandia National Laboratories, 1989.
    [16] The San Diego Mechanism. Chemical-kinetic mechanisms for combustion applications[EB/OL]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [17] Varatharajan B, Williams F A. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen diluents systems[J]. Combustion and Flame, 2001, 124(4): 624-645. https://www.sciencedirect.com/science/article/pii/S0010218000002352
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  4167
  • HTML全文浏览量:  481
  • PDF下载量:  873
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-21
  • 修回日期:  2014-05-04
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回