基于微裂纹界面摩擦生热的点火模型

楼建锋 张延耿 洪滔 周婷婷 郭少冬

楼建锋, 张延耿, 洪滔, 周婷婷, 郭少冬. 基于微裂纹界面摩擦生热的点火模型[J]. 爆炸与冲击, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05
引用本文: 楼建锋, 张延耿, 洪滔, 周婷婷, 郭少冬. 基于微裂纹界面摩擦生热的点火模型[J]. 爆炸与冲击, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05
Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05
Citation: Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05

基于微裂纹界面摩擦生热的点火模型

doi: 10.11883/1001-1455(2015)06-0807-05
基金项目: 国家自然科学基金项目(11302031, 11372053, 11402031);中国工程物理研究院科学技术发展基金项目(2012A0101004, 2014B0101014, 2014A0201008)
详细信息
    作者简介:

    楼建锋(1980—), 男, 博士, 副研究员

    通讯作者:

    张延耿, zhang_yangeng@iapcm.ac.cn

  • 中图分类号: O389

Study on the model of hot-spot ignition based on friction generated heat on the microcrack face

  • 摘要: 开展了基于微裂纹界面摩擦生热的细观点火模型研究,采用有限元方法对包含化学反应放热和摩擦生热的热传递方程进行了离散求解,计算模型中考虑了炸药颗粒熔化对升温过程的影响。着重分析了点火模型中主要参数(热点尺度、应变率和界面压力)对炸药点火的影响规律。数值研究表明,随着热点尺度的增大,热点的温度上升越快,越容易发生点火;应变率越大或者界面压力越高,热量积累越快,炸药越容易点火。
  • 图  1  微裂纹面热点模型示意图

    Figure  1.  Configuration of hot-spot model showing friction generated heat

    图  2  一维热传递单元

    Figure  2.  The one dimensional heat transfer element

    图  3  不同热点尺度情况下热点中心温度随时间的变化

    Figure  3.  Temperature at center of hot-spot vs. time for the cases of different hot-spot sizes

    图  4  不同时刻距离裂纹面不同位置的温度分布

    Figure  4.  Temperature distribution vs. distance from crack face at various times

    图  5  不同应变率下点火时间的比较

    Figure  5.  Effect of strain rate on ignition time for a constant pressure

    图  6  不同界面压力下点火时间的比较

    Figure  6.  Effect of pressure on ignition time for a constant strain rate

  • [1] Asay Blaine W. Non-shock initiation of explosives[M]. Heidelberg: Springer-Verlag, 2010: 15-18.
    [2] Bowden F P, Yoffe A D. Initiation and growth of explosives in liquids and solids[M]. Cambridge: Cambridge University Press, 1952.
    [3] Bowden F P, Yoffe A D. Hot spots on rubbing surfaces and the detonation of explosives by friction[J]. Proceedings of the Royal Society of London, Series A: Mathematical & Physical Sciences, 1947, 188(10): 329-349. doi: 10.1098/rspa.1947.0012
    [4] Amosov A P, Bostandzhiyan S A, Kozlov V S. Ignition of solid explosives by the heat of dry friction[J]. Fizika Goreniya i Vzryva, 1972, 8(3): 362-368. http://www.onacademic.com/detail/journal_1000034907003910_0866.html
    [5] Amosov A P, Bostandzhiyan S A, Kozlov V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Fizika Goreniya i Vzryva, 1976, 12(5): 699-703. doi: 10.1007/BF00743166
    [6] Wiegand D A, Redingius B, Ellis K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629. http://www.sciencedirect.com/science/article/pii/S0020768311000424
    [7] Wiegand D A, Redingius B, Ellis K, et al. Evidence for fricgtion between crack surfaces during deformation of dcomposite plastic bonded explosives[C]∥Elert M L, Buttle W T, Furnish M D, et al. Proceedings of Shock Compression of Condensed Matter-2009. Nashville, Tennessee, 2009: 349-352.
    [8] Wiegand D A, Redingius B. The role of friction in the mechanical failure properties of a polymer particulate composite[C]∥APS March Meeting. New Orleans, 2008.
    [9] 陈文.高速侵彻条件下战斗部装药安全性研究[D].北京: 北京理工大学, 2009.
    [10] Boyle V, Frey R, Blake O. Combined pressure shear ignition of explosive[C]∥Lee E L, Short J M. Proceedings of the 9th International Detonation Symposium. Oregon, Portland, 1989: 3-17.
    [11] Frey R B. The initiation of explosive charges by rapid shear[C]∥Proceedings of the 7th International Detonation Symposium. Annapolis, Maryland, 1981: 36-42.
    [12] Dienes J K. A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity[M]. New York: Springer, 1996: 366-398.
    [13] Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]∥Short J M, Kennedy J E. Proceeding of the 11th International Detonation Symposium. Snowmass, Colorado, 1998: 717-724.
    [14] Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. Journal of Computer-Aided Materials Design, 2000, 7(3): 217-237. doi: 10.1023/A:1011874909560
    [15] Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of Mechanical Physical Solids, 1998, 46(12): 2303-2322. doi: 10.1016/S0022-5096(98)00011-8
    [16] Linan A, Williams F A. Theory of ignition of a reactive solid by constant energy flux[J]. Combustion Science and Technology, 1971, 3(2): 91-98. doi: 10.1080/00102207108952276
  • 加载中
图(6)
计量
  • 文章访问数:  4189
  • HTML全文浏览量:  412
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-07-24
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回