• ISSN 1001-1455  CN 51-1148/O3
  • EI Compendex、CA收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
高级检索 E-mail Alert

脉冲气流发生器流场的优化实验研究

任保祥 陶钢 周杰 王坚 王保贵

引用本文:
Citation:

脉冲气流发生器流场的优化实验研究

    作者简介: 任保祥(1990—),男,博士研究生, Renbx90@163.com;
  • 中图分类号: O357.5

Experimental research on optimizing the flow fieldof pulse gas flow generator

  • CLC number: O357.5

  • 摘要: 为了分析脉冲气流发生器在不同喷嘴结构下的脉冲气流特征及其流场的变化规律,利用高速摄影技术, 通过控制闪光光源,得到不同喷嘴结构产生的冲击波及脉冲气流流场的实验图像及其影响。采用多项式拟合的方法获得冲击波超压值、速度随距离变化的衰减规律;通过图像处理技术,获取脉冲气流的有效数据,采用一阶指数衰减方程拟合出脉冲气流位移、速度随时间的变化规律。该实验方法及数据处理技术可以认知不同结构脉冲气流发生器产生的冲击波、脉冲气流的相关参数。
  • 图 1  压力传感器布置

    Figure 1.  Setup of pressure sensors

    图 2  实验装置示意图

    Figure 2.  Schematic of experiment devices

    图 3  脉冲气流发生器

    Figure 3.  Pulse gas flow generator

    图 4  喷嘴的结构示意图

    Figure 4.  Schematic of nozzle structures

    图 5  压力传感器测试的冲击波波形

    Figure 5.  Shock wave profiles measured by pressure sensors

    图 6  没有安装喷嘴时冲击波及脉冲气流的流场图

    Figure 6.  Shock wave and gas flow measuredwith no nozzle installed

    图 7  安装喷嘴1时冲击波及脉冲气流的流场图

    Figure 7.  Shock wave and gas flow measuredwith nozzle 1 installed

    图 8  冲击波超压值随距离的变化曲线

    Figure 8.  Shock wave overpressures corresponding to distance

    图 9  脉冲气流产生的涡环[1]

    Figure 9.  A vortex ring generated by pulse gas

    图 10  脉冲气流的位移

    Figure 10.  Pulse gas flow displacements

    图 11  脉冲气流的运动速度

    Figure 11.  Pulse gas flow velocities

    表 1  冲击波超压值和正相作用时间的测试结果

    Table 1.  Overpressure and positive time of shock wave measured in experiment

    方案 n p/kPa t+/ms p/kPa t+/ms p/kPa t+/ms
    传感器1 传感器2 传感器3
    无喷嘴 1 75.69 - 15.91 - 10.09 0.63
    喷嘴1 1 40.00 0.75 10.00 0.97 6.00 0.78
    2 40.00 8.18 5.62
    3 25.00 5.62 3.69
    4 50.00 5.86 4.45
    喷嘴2 1 22.76 0.70 5.60 0.57 3.33 0.87
    2 29.57 5.37 2.96
    3 32.70 5.30 3.13
    4 40.85 5.65 2.70
    5 17.28 4.23 1.72
    喷嘴3 1 20.80 0.61 5.30 0.88 3.12 0.86
    2 22.41 4.73 2.88
    3 29.15 4.97 3.72
    4 38.07 7.23 3.66
    下载: 导出CSV

    表 2  冲击波超压拟合曲线的常数

    Table 2.  Experimental parameters ofshock wave overpressure fitting curves

    方案 A1 A2 A3
    无喷嘴 7.593 0.600 0.325
    喷嘴1 3.415 2.130 -0.168
    喷嘴2 1.805 1.157 -0.092
    喷嘴3 1.532 1.264 -0.125
    下载: 导出CSV

    表 3  冲击波正相冲量与脉冲气流速度

    Table 3.  Shock wave positive impulsesand pulse gas velocities

    方案 R/m I+/(Pa·s) v/(m·s-1)
    0.225 - 180.0
    无喷嘴 0.615 2.50 45.5
    0.895 2.02 -
    0.225 12.22 156.4
    喷嘴1 0.615 2.99 64.4
    0.895 1.86 -
    0.225 8.20 166.8
    喷嘴2 0.615 1.82 67.0
    0.895 1.19 -
    0.225 8.33 176.9
    喷嘴3 0.615 2.14 46.0
    0.895 1.26 -
    下载: 导出CSV

    表 4  脉冲气流位移拟合曲线的常数

    Table 4.  Experimental parameters for fitting curvesof pulse gas flow displacement

    方案 B0 B1 B2/10-3
    无喷嘴 0.747 -0.649 2.90
    喷嘴1 0.888 -0.809 4.24
    喷嘴2 0.877 -0.831 3.91
    喷嘴3 0.752 -0.712 2.98
    下载: 导出CSV
  • [1] Lucey G, Jasper L. Vortex ring generator[R]. Adelphi, MD: Army Research Laboratory, 1998.
    [2] Shusser M, Gharib M. Energy and velocity of a forming vortex ring[J]. Physics of Fluids (1994-present), 2000, 12(3):618-621. doi: 10.1063/1.870268
    [3] Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 360:121-140. doi: 10.1017/S0022112097008410
    [4] Linden P F, Turner J S. The formation of optimal vortex rings, and the efficiency of propulsion devices[J]. Journal of Fluid Mechanics, 2001, 427:61-72. doi: 10.1017/S0022112000002263
    [5] Dabiri J O, Gharib M. Delay of vortex ring pinchoff by an imposed bulk counterflow[J]. Physics of Fluids (1994-present), 2004, 16(4):L28-L30. doi: 10.1063/1.1669353
    [6] Mohseni K, Ran H, Colonius T. Numerical experiments on vortex ring formation[J]. Journal of Fluid Mechanics, 2001, 430:267-282. doi: 10.1017/S0022112000003025
    [7] Saffman P G. Vortex dynamics[M]. Cambridge University Press, 1992.
    [8] Widnall S E, Bliss D B, Tsai C Y. The instability of short waves on a vortex ring[J]. Journal of Fluid Mechanics, 1974, 66(1):35-47.
    [9] Widnall S E, Tsai C Y. The instability of the thin vortex ring of constant vorticity[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1977, 287(1344):273-305. doi: 10.1098/rsta.1977.0146
    [10] Fraenkel L E. Examples of steady vortex rings of small cross-section in an ideal fluid[J]. Journal of Fluid Mechanics, 1972, 51(1):119-135.
    [11] Maxworthy T. Turbulent vortex rings[J]. Journal of Fluid Mechanics, 1974, 64(2):227-240. doi: 10.1017/S0022112074002370
    [12] Stanaway S K, Cantwell B J, Spalart P R. A numerical study of viscous vortex rings using a spectral method[R]. NASA STI/Recon Technical Report N, 1988.
    [13] Jassim E, Abdi M A, Muzychka Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 1. Real gas effects and shockwave[J]. Petroleum Science and Technology, 2008, 26(15):1757-1772. doi: 10.1080/10916460701287847
    [14] Ryzhov O S. Shockwave formation in laval nozzles[J]. Journal of Applied Mathematics and Mechanics, 1963, 27(2):453-494. doi: 10.1016/0021-8928(63)90013-3
    [15] Brezhnev A L, Chernov I A. On the formation of shock waves in laval nozzles[J]. Journal of Applied Mathematics and Mechanics, 1981, 45(4):486-493. doi: 10.1016/0021-8928(81)90092-7
    [16] Akhmetov D G. Vortex rings[M]. Berlin: Springer, 2009.
    [17] Maxworthy T. Some experimental studies of vortex rings[J]. Journal of Fluid Mechanics, 1977, 81(3):465-495. doi: 10.1017/S0022112077002171
  • [1] 赖富文张志杰张建宇李冬 . 基于动态特性补偿的冲击波测试数据处理方法. 爆炸与冲击, 2015, 35(6): 871-875. doi: 10.11883/1001-1455(2015)06-0871-05
    [2] 余尚江李科杰 . 混凝土结构内冲击波应力传感器设计及其行为. 爆炸与冲击, 2005, 25(4): 350-354. doi: 10.11883/1001-1455(2005)04-0350-05
    [3] 孙悦慈佳祥孙东 . 一种冲击波速度传感器性能的检测装置. 爆炸与冲击, 2007, 27(5): 473-476. doi: 10.11883/1001-1455(2007)05-0473-04
    [4] 王刚华孙承纬赵剑衡胡熙静蒋吉昊 . 磁驱动平面飞片的一维磁流体力学计算. 爆炸与冲击, 2008, 28(3): 261-264. doi: 10.11883/1001-1455(2008)03-0261-04
    [5] 刘娜陈艺冰 . 多介质流体力学计算的谱体积方法. 爆炸与冲击, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06
    [6] 伍俊英陈朗冯长根 . 爆炸去磁脉冲功率发生器的实验和理论计算. 爆炸与冲击, 2007, 27(5): 398-404. doi: 10.11883/1001-1455(2007)05-0398-07
    [7] 柏劲松王涛邹立勇李平 . 可压缩多介质粘性流体和湍流的大涡模拟. 爆炸与冲击, 2010, 30(3): 262-268. doi: 10.11883/1001-1455(2010)03-0262-07
    [8] 侯保林 . 磁流体特性对磁流变火炮后坐阻尼器性能的影响. 爆炸与冲击, 2006, 26(3): 245-249. doi: 10.11883/1001-1455(2006)03-0245-05
    [9] 廖华林李根生 . 孔隙流体耦合效应对射流冲击应力分布的影响分析. 爆炸与冲击, 2006, 26(1): 84-90. doi: 10.11883/1001-1455(2006)01-0084-07
    [10] 穆朝民韩靖 . 高压水射流冲击煤体的力学特征. 爆炸与冲击, 2015, 35(3): 442-448. doi: 10.11883/1001-1455(2015)03-0442-07
    [11] 薛冰马宏昊沈兆武余勇 . 爆炸容器内小药量实验动态标定压力传感器. 爆炸与冲击, 2015, 35(3): 437-441. doi: 10.11883/1001-1455(2015)03-0437-05
    [12] 白春玉刘小川周苏枫黎伟明舒挽 . 中应变率下材料动态拉伸关键参数测试方法. 爆炸与冲击, 2015, 35(4): 507-512. doi: 10.11883/1001-1455(2015)04-0507-06
    [13] 姚成宝李若田宙郭永辉 . 空气自由场中强爆炸冲击波传播二维数值模拟. 爆炸与冲击, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06
    [14] 王永虎石秀华 . 入水冲击问题研究的现状与进展. 爆炸与冲击, 2008, 28(3): 276-282. doi: 10.11883/1001-1455(2008)03-0276-07
    [15] 周杰陶钢王健 . 爆炸冲击波对肺损伤的数值模拟. 爆炸与冲击, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05
    [16] 张柱晋艳娟 . 反向起爆模型下的冲击波加载. 爆炸与冲击, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06
    [17] 师华强宗智贾敬蓓 . 水下爆炸冲击波的近场特性. 爆炸与冲击, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06
    [18] 周佩杰王坚陶钢周杰 . 泡沫材料对冲击波的衰减特性. 爆炸与冲击, 2015, 35(5): 675-681. doi: 10.11883/1001-1455(2015)05-0675-07
    [19] 李梅蒋建伟王昕 . 复合装药空气中爆炸冲击波传播特性. 爆炸与冲击, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209
    [20] 梁运涛曾文 . 激波诱导瓦斯爆炸的动力学特性及影响因素. 爆炸与冲击, 2010, 30(4): 370-376. doi: 10.11883/1001-1455(2010)04-0370-07
  • 加载中
图(11)表(4)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  8
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-09
  • 录用日期:  2015-01-04
  • 刊出日期:  2016-01-25

脉冲气流发生器流场的优化实验研究

    作者简介:任保祥(1990—),男,博士研究生, Renbx90@163.com
  • 1. 南京理工大学能源与动力工程学院,江苏 南京 210094
  • 2. 北京跟踪与通信技术研究所,北京 100094

摘要: 为了分析脉冲气流发生器在不同喷嘴结构下的脉冲气流特征及其流场的变化规律,利用高速摄影技术, 通过控制闪光光源,得到不同喷嘴结构产生的冲击波及脉冲气流流场的实验图像及其影响。采用多项式拟合的方法获得冲击波超压值、速度随距离变化的衰减规律;通过图像处理技术,获取脉冲气流的有效数据,采用一阶指数衰减方程拟合出脉冲气流位移、速度随时间的变化规律。该实验方法及数据处理技术可以认知不同结构脉冲气流发生器产生的冲击波、脉冲气流的相关参数。

English Abstract

  • 1996年,Wortman提出利用脉冲气流发生器作为非致命性武器的概念,其原理[1]是在产生强脉冲气流的基础上产生优化的涡环气流。M.Shusser等[2]、M.Gharib等[3]、P.F.Linden等[4]和J.O.Dabiri等[5]对涡环产生的时间尺度以及涡环的能量、速度进行了研究,得到了涡环速度方程。K.Mohseni等[6]对涡环的形成进行了数值实验研究。P.G.Saffman[7]、S.E.Widnall等[8-9]、L.E.Fraenkel[10]和T.Maxworthy[11]分别进行了关于气体稳流和湍流中涡环现象的研究,给出了涡环状态的动力学描述。S.K.Stanaway等[12]利用光谱法,对黏性气体流动中的涡环进行了数值研究。E.Jassim等[13]进行了气体过拉法尔喷嘴的真实气体效应和冲击波的研究。O.S.Ryzhov[14]和A.L.Brezhnev等[15]对拉法尔喷嘴产生冲击波进行了研究,得到了拉法尔喷嘴产生冲击波的充分条件。

    脉冲气流发生器设计时,需要降低甚至消除脉冲气流发生器口产生的马赫盘、紊流等对涡环的产生和传播有不利影响的因素[1],并提高脉冲气流的速度和能量。不带喷嘴的脉冲气流发生器产生脉冲气流时,会在脉冲气流前部形成马赫盘,产生强冲击波,这种强冲击波本身能量很高但是衰减速度很快,脉冲气流的能量相对较低且脉冲气流形成的涡环不能越过激波向前传播,而被脉冲气流发生器口的脉冲气流消耗掉[16]。因此,减弱脉冲气流发生器口的冲击波强度、降低冲击波能量、增加脉冲气流动能的研究,是很有必要的。

    本文中,利用不同结构的拉伐尔喷嘴进行实验研究,通过减弱冲击波强度,降低冲击波能量,消除脉冲气流发生器口产生的马赫盘、紊流等对脉冲气流产生和传播涡环的不利影响[16]。这样,可提高脉冲气流速度,增加脉冲气流动能,加强脉冲气流产生涡环的能力。并且,在喷嘴喉前部形成脉冲气流高压区,延长脉冲气流射出喷嘴的时间,避免脉冲气流的壅塞,可为装置的优化设计提供有效的参考。

    • 实验布置如图 1~2所示,脉冲气流发生器固定在铁架台上,装置的中心轴与压力测试线在同一水平面上,为准确测试冲击波的流场性质,在压力测试线上布置传感器。其中,冲击波由脉冲气流发生器中的火药产生,压力测试线上放置3个传感器获得不同距离的冲击波的压力曲线,3个传感器的中心距离脉冲气流发生器喷口的距离分别是:L1=225 mm,L2=615 mm,L3=895 mm。通过控制闪光光源,利用高速摄影仪记录冲击波流场的变化情况。采用KISTLER 211B型压电式石英传感器和DEWE-2010型数据采集仪、Fastcam nltima APX型高速摄影仪测试。

      图  1  压力传感器布置

      Figure 1.  Setup of pressure sensors

      图  2  实验装置示意图

      Figure 2.  Schematic of experiment devices

    • 脉冲气流发生器主要由发射器按钮、装弹处、枪管等部件组成,如图 3所示。脉冲气流发生器使用空爆弹,火药爆燃后在枪管口部产生冲击波场。为了研究不同喷嘴对冲击波流场的影响,加工了不同结构的喷嘴1、2、3,具体的尺寸如图 4所示。

      图  3  脉冲气流发生器

      Figure 3.  Pulse gas flow generator

      图  4  喷嘴的结构示意图

      Figure 4.  Schematic of nozzle structures

      设计了4种方案,脉冲气流发生器不安装前喷嘴和安装喷嘴1、2、3。脉冲气流发生器不安装喷嘴时,高速摄影频率设置为5 000 s-1,安装喷嘴时,频率设置为8 000 s-1

    • 分别对4种实验设计方案进行压力测试,图 5为冲击波流场压力测试结果。传感器1测得的冲击波波形比较复杂,是因为脉冲气流中含有火药燃烧产物撞击到传感器上;传感器2测得的冲击波波形就相对平滑,因为脉冲气流的速度比冲击波的运动速度低,所以在压力波形的后半段比较杂乱;传感器3测得的压力波形为一个光滑的冲击波,因为经过一定时间后,脉冲气流的运动已远远落后于冲击波。喷嘴1方案中,传感器1、2、3测得的压力波形均比较光滑,因为喷嘴1的收缩段对火药燃烧产物起到了阻挡作用,使只有少量的爆炸产物撞击在传感器测试端面上,3个传感器均测得4个冲击波,而且最大超压由75 kPa下降到小于50 kPa,说明喷嘴对冲击波状态影响很大。喷嘴2方案中,最大超压值进一步降低至40 kPa,传感器1、2、3测得的冲击波有5个。喷嘴3方案中,传感器1、2、3测得的冲击波有4个,但后面的峰值很高,峰值高衰减快。

      图  5  压力传感器测试的冲击波波形

      Figure 5.  Shock wave profiles measured by pressure sensors

      表 1为脉冲气流发生器不安装喷嘴和安装喷嘴1、2、3时冲击波超压值和正相作用时间的测试结果,n为冲击波次序。由表 1可以得到,脉冲气流发生器安装喷嘴时,正相作用时间比不安装喷嘴时的长,说明同样情况下,能量可传输更远距离。

      方案 n p/kPa t+/ms p/kPa t+/ms p/kPa t+/ms
      传感器1 传感器2 传感器3
      无喷嘴 1 75.69 - 15.91 - 10.09 0.63
      喷嘴1 1 40.00 0.75 10.00 0.97 6.00 0.78
      2 40.00 8.18 5.62
      3 25.00 5.62 3.69
      4 50.00 5.86 4.45
      喷嘴2 1 22.76 0.70 5.60 0.57 3.33 0.87
      2 29.57 5.37 2.96
      3 32.70 5.30 3.13
      4 40.85 5.65 2.70
      5 17.28 4.23 1.72
      喷嘴3 1 20.80 0.61 5.30 0.88 3.12 0.86
      2 22.41 4.73 2.88
      3 29.15 4.97 3.72
      4 38.07 7.23 3.66

      表 1  冲击波超压值和正相作用时间的测试结果

      Table 1.  Overpressure and positive time of shock wave measured in experiment

    • 通过控制闪光光源的曝光时间,利用高速摄影仪记录冲击波流场,采样频率为5 000 s-1时,实验照片的有效视场为620 mm×220 mm,采样频率为8 000 s-1时,有效视场为620 mm×170 mm。图 6~7分别为脉冲气流发生器上没有安装喷嘴、安装喷嘴1时,射击产生的冲击波流场的典型时刻的实验图像。由图可见,冲击波、火药燃烧后的脉冲气流的轮廓及位移的变化情况,冲击波的运动速度大于脉冲气流的速度,随着时间的增加,冲击波的强度越来越弱,所以反映在图像上的色差效果也越来越弱;安装喷嘴1后可以使脉冲气流产生涡环现象,有效地改变火药燃烧气流喷射出来的形态。

      图  6  没有安装喷嘴时冲击波及脉冲气流的流场图

      Figure 6.  Shock wave and gas flow measuredwith no nozzle installed

      图  7  安装喷嘴1时冲击波及脉冲气流的流场图

      Figure 7.  Shock wave and gas flow measuredwith nozzle 1 installed

    • 根据实验数据点,利用最小二乘法拟合,得出冲击波的超压值随距离变化的多项式:

      $ p(R) = \frac{{{A_1}}}{R} + \frac{{{A_2}}}{{{R^2}}} + \frac{{{A_3}}}{{{R^3}}} $

      式中:p(R)为冲击波的超压值, kPa;R为位置距气流发生器的距离,m;A1A2A3为实验常数,拟合曲线的具体参数,如表 2所示。可以估算,在实验中一定距离内冲击波的超压值与距离之间的关系。其中,拟合喷嘴1、2、3的冲击波超压值随距离变化的曲线,超压值均取压力传感器测得的第1个冲击波的波峰为有效值。

      方案 A1 A2 A3
      无喷嘴 7.593 0.600 0.325
      喷嘴1 3.415 2.130 -0.168
      喷嘴2 1.805 1.157 -0.092
      喷嘴3 1.532 1.264 -0.125

      表 2  冲击波超压拟合曲线的常数

      Table 2.  Experimental parameters ofshock wave overpressure fitting curves

      图 8是冲击波超压值随着距离的变化曲线。由图可知,脉冲气流发生器不安装喷嘴时产生的冲击波的超压值最大;安装喷嘴1产生的冲击波的超压值低于前者;而安装喷嘴2、3的冲击波的超压值最低,两者在中、远场的压力变化规律基本一致。

      图  8  冲击波超压值随距离的变化曲线

      Figure 8.  Shock wave overpressures corresponding to distance

      对冲击波的超压曲线积分,可得出冲击波的正相冲量值,由拟合的脉冲气流位移、速度公式得到不同距离脉冲气流的速度值,具体数值见表 3。由于不安装喷嘴时,传感器1测得的冲击波正相时间无法读取,所以只得到传感器2、3的正相冲量。由表 3可得,喷嘴1、2、3传感器2的冲击波正相冲量值与传感器1的相比,分别降低了75.5%、77.8%、74.4%,减少的冲击波正相冲量转变为脉冲气流的能量。喷嘴1、2、3传感器2的脉冲气流的动能,比不安装喷嘴时的脉冲气流动能,分别提高了100.3%、116.8%、2.2%。

      方案 R/m I+/(Pa·s) v/(m·s-1)
      0.225 - 180.0
      无喷嘴 0.615 2.50 45.5
      0.895 2.02 -
      0.225 12.22 156.4
      喷嘴1 0.615 2.99 64.4
      0.895 1.86 -
      0.225 8.20 166.8
      喷嘴2 0.615 1.82 67.0
      0.895 1.19 -
      0.225 8.33 176.9
      喷嘴3 0.615 2.14 46.0
      0.895 1.26 -

      表 3  冲击波正相冲量与脉冲气流速度

      Table 3.  Shock wave positive impulsesand pulse gas velocities

    • 脉冲气流发生器产生的运动速度很高的脉冲气流与喷口外的空气相互作用,由于对环境气体的强引流作用,形成围绕脉冲气流的涡环,如图 9所示[1]。脉冲气流发生器产生的涡环,是一个环形旋转的平移速度垂直于环平面的流体。涡环具有稳定的气体动力学运动状态,涡环的极向流动降低了它与周围流体的摩擦阻力,且T.Maxworthy[17]证实了涡环的形成可以夹带大量的流体,因而涡环运动的质量和动能损失较小。所以涡环运动相对气流运动,能够携带大量流体运动更远的距离。

      图  9  脉冲气流产生的涡环[1]

      Figure 9.  A vortex ring generated by pulse gas

      脉冲气流的运动速度与冲击波的运动速度相比较小,且在图像上的色差也较明显,所以能在实验获得的图片视场上取得多个有效的数据点。根据图像视场的大小,对图像进行坐标划分,读取每帧照片中脉冲气流的空间坐标,取运动方向上的坐标值为有效数据,可研究脉冲气流运动的位移随时间变化的规律。根据图像处理获得的数据点,利用一阶指数衰减方程拟合出脉冲气流位移随时间的变化曲线,再对时间进行微分后,即可得到脉冲气流的运动速度随时间变化的曲线:

      $ L(t) = {B_0} + {B_1}{{\rm{e}}^{ - t/{B_2}}} $

      $ V(t) = \frac{{{\rm{d}}L(t)}}{{{\rm{d}}t}} = - \frac{{{B_1}}}{{{B_2}}}{{\rm{e}}^{ - t/{B_2}}} $

      式中:L(t)为脉冲气流距脉冲气流发生器口的距离,m;V(t)为冲击波或脉冲气流运动速度,m/s;t为时间,s;B0B1B2为实验常数,如表 4所示。

      方案 B0 B1 B2/10-3
      无喷嘴 0.747 -0.649 2.90
      喷嘴1 0.888 -0.809 4.24
      喷嘴2 0.877 -0.831 3.91
      喷嘴3 0.752 -0.712 2.98

      表 4  脉冲气流位移拟合曲线的常数

      Table 4.  Experimental parameters for fitting curvesof pulse gas flow displacement

      图 10为脉冲气流的位移随时间变化的拟合曲线,拟合曲线的曲率均随时间的变长而变小,也就是脉冲气流的运动速度越来越小。图 11为脉冲气流的运动速度随时间变化的曲线,运动速度均呈指数下降。其中,脉冲气流的出口速度由大到小依次为:喷嘴3、无喷嘴、喷嘴2、喷嘴1,由于脉冲气流形态及空气阻尼效应,运动一段时间后其速度由大到小依次为:喷嘴2、喷嘴1、喷嘴3、无喷嘴。可知在脉冲气流发生器口安装喷嘴,可以有效地改变脉冲气流的形态,有效地降低脉冲气流在空气中所受的阻力,从而增加脉冲气流作用的有效距离。其中,喷嘴2、3是比较理想的选择。

      图  10  脉冲气流的位移

      Figure 10.  Pulse gas flow displacements

      图  11  脉冲气流的运动速度

      Figure 11.  Pulse gas flow velocities

      通过实验与数据处理方法,可以有效地获得一定距离内的冲击波、脉冲气流的轮廓和位移的变化规律。实验中采用的脉冲气流发生器为样机,其中火药量较小,只有7 g左右,所以产生的冲击波超压值、火药燃烧的气体量均较小。有效的作用范围在1 m左右,且由于实验环境的影响,通过图像处理技术得到的有效数据点也相对较少。下一步研究的重点是改善结构设计和测试环境,获得冲击波、脉冲气流理想的有效作用距离和高质量的实验图像。

    • 通过对安装不同喷嘴的脉冲气流发生器产生的冲击波场的实验研究,得到下列结论。

      (1) 建立的实验装置可以完成优化脉冲气流发生器流场的研究,通过高速摄像可以研究冲击波和脉冲气流的运动状态。

      (2) 安装不同喷嘴后可以有效的改变冲击波的状态,产生多个冲击波。

      (3) 安装不同喷嘴可以改变脉冲气流的运动状态,使脉冲气流产生明显的涡环现象,增加脉冲气流的运动距离。其中安装喷嘴2时,冲击波正相冲量同比降低77.8%,脉冲气流动能比不安装喷嘴时增加了116.7%,脉冲气流的运动状态最优。

参考文献 (17)

目录

    /

    返回文章
    返回