金属铍的压缩变形行为

肖大武 邱志聪 巫祥超 何立峰

肖大武, 邱志聪, 巫祥超, 何立峰. 金属铍的压缩变形行为[J]. 爆炸与冲击, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04
引用本文: 肖大武, 邱志聪, 巫祥超, 何立峰. 金属铍的压缩变形行为[J]. 爆炸与冲击, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04
Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng. Compressive deformation behaviors of beryllium[J]. Explosion And Shock Waves, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04
Citation: Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng. Compressive deformation behaviors of beryllium[J]. Explosion And Shock Waves, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04

金属铍的压缩变形行为

doi: 10.11883/1001-1455(2016)02-0285-04
基金项目: 

中国工程物理研究院科学技术发展基金项目 2013B0301048

详细信息
    作者简介:

    肖大武(1983—),男,博士,副研究员,hopkinson@163.com

  • 中图分类号: O347

Compressive deformation behaviors of beryllium

  • 摘要: 利用材料试验机及Hopkinson杆装置系统开展热等静压金属铍在不同温度下的静动态压缩力学行为研究,获得了温度、应变率对金属铍屈服强度和加工硬化行为的影响规律。结果表明:金属铍在压缩应力状态下呈现出良好的塑性,同时其力学性能具有显著的应变率敏感性与热软化效应,屈服强度和流动应力随应变率提高呈明显增大趋势,随着温度升高逐渐降低。同时,室温下其加工硬化行为随着应变增大表现为分段硬化特征,随温度升高则趋于理想塑性。最后,采用修正的Johnson-Cook本构模型对实验结果进行了拟合,模型计算结果与实验结果吻合较好。
  • 图  1  金属铍在准静态条件下应力应变关系

    Figure  1.  Relation between stress and strain under quasi-static condition

    图  2  金属铍在准静态条件下流动应力随温度变化曲线

    Figure  2.  Relation between flow stress and temprature under quasi-static condition

    图  3  金属铍的动态压缩力学行为

    Figure  3.  The dynamic compressive behavior of beryllium

    图  4  修正Johnson-Cook模型计算结果与实验结果对比

    Figure  4.  Comparison of experimental results with calculated results by modified Johnson-Cook model

  • [1] 王零森, 钟景明, 付晓旭, 等.晶粒尺寸对等静压铍材力学性能的影响[J].中南大学学报, 1999, 30(4):395-397. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD904.016.htm

    Wang Lingsen, Zhong Jingming, Fu Xiaoxu, et al. The influence of grain size on mechanical properties of isostatically pressed beryllium materials[J]. Journal of Central South University: Science and Technology, 1999, 30(4):395-397. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD904.016.htm
    [2] 许德美, 李峰, 王东新, 等.组织缺陷对金属铍室温断裂行为的影响规律研究[J].稀有金属, 2010, 34(6):844-849. http://d.old.wanfangdata.com.cn/Periodical/xyjs201006011

    Xu Demei, Li Feng, Wang Dongxin, et al. Effects of microstructure defects on fracture behavior of beryllium metal at room temperature[J]. Chinese Journal of Rare Metals, 2010, 34(6):844-849. http://d.old.wanfangdata.com.cn/Periodical/xyjs201006011
    [3] 许德美, 秦高梧, 李峰, 等.BeO杂质形态与分布对金属铍力学性能的影响[J].中国有色金属学报, 2011, 21(4):769-776. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201104010

    Xu Demei, Qin Gaowu, Li Feng, et al. Effects of morphology and distribution of BeO impurity on mechanical properties of metal beryllium[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):769-776. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201104010
    [4] Blumenthal W R, Abeln S P, Cannon D D, et al. Influence of strain rate and temperature on the mechanical behavior of beryllium[C]//The Tenth American Physical Society Topical Conference on Shock Compression of Condensed Matter. 1998.
    [5] Blumenthal W R, Abeln S P, Mataya M C, et al. Dynamic behavior of beryllium as a function of texture[R]. Los Alamos National Laboratory, 1999.
    [6] Brown D W, Beyerlein I J, Sisneros TA, et al. Role of twinning and slip during compressive deformation of beryllium as a function of strain rate[J]. International Journal of Plasticity, 2012, 29(2):120-135. http://cn.bing.com/academic/profile?id=e7fbe59673306bd7d6e2247e799cfe15&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Brown D W, Almer J D, Clausen B, et al. Twinning and de-twinning in beryllium during strain path changes[J]. Materials Science and Engineering: A, 2013, 559(1):29-39. http://cn.bing.com/academic/profile?id=e23a091fee5d583904619d78b5a31bcd&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Sisneros T A, Brown D W, Clausen B, et al. Influence of strain rate on mechanical properties and deformation texture of hot-pressed and rolled beryllium[J]. Materials Science and Engineering: A, 2010, 527(20):5181-5188. doi: 10.1016/j.msea.2010.04.035
    [9] Nicholas T. Mechanical properties of structural grades of beryllium at high strain rates[R]. Air Force Materials Laboratory, Wright-Patterson Air Force Base, 1975.
    [10] Breithaupt D. Dynamic compressive strain rate tests on two types of beryllium[R]. Lawrence Livermore National Laboratory, 1983.
    [11] 张鹏程, 田黎明.车削加工对铍组织与性能的损伤[J].稀有金属, 2001, 25(2):90-93. http://www.cnki.com.cn/Article/CJFDTotal-ZXJS200102002.htm

    Zhang Pengcheng, Tian Liming. Effects of lathe on microstructure and mechanical properties of beryllium[J]. Chinese Journal of Rare Metals, 2001, 25(2):90-93. http://www.cnki.com.cn/Article/CJFDTotal-ZXJS200102002.htm
  • 加载中
图(4)
计量
  • 文章访问数:  6107
  • HTML全文浏览量:  2386
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-06-09
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回