强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响

张凤国 周洪强 胡晓棉 王裴 邵建立 冯其京

张凤国, 周洪强, 胡晓棉, 王裴, 邵建立, 冯其京. 强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响[J]. 爆炸与冲击, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07
引用本文: 张凤国, 周洪强, 胡晓棉, 王裴, 邵建立, 冯其京. 强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响[J]. 爆炸与冲击, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07
Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07
Citation: Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07

强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响

doi: 10.11883/1001-1455(2016)05-0596-07
基金项目: 

国家自然科学基金项目 U1530261

国家自然科学基金项目 11372052

国家自然科学基金项目 11572054

中国工程物理研究院科学技术发展基金项目 2013B0101013

详细信息
    作者简介:

    第一作者:张凤国(1969—),男,硕士,研究员,zhang_fengguo@iapcm.ac.cn

  • 中图分类号: O347.3

Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading

  • 摘要: 针对强动载作用下延性金属的层裂问题,在分析孔洞之间几何关联的基础上,定义了一个新的耦合损伤及孔洞几何信息的孔洞汇合判定方法,同时,基于能量守恒原理,解析了孔洞汇合对损伤快速增长影响的物理机理.通过分析数值计算结果和对比相关文献的实验可知:孔洞汇合后不仅引起损伤增长,而且导致了损伤材料内部微孔洞数目的减少、孔洞平均尺寸的增加。
  • 图  1  孔洞汇合实验结果

    Figure  1.  Void coalescence by direct impingement in tantalum

    图  2  孔洞间的几何关系

    Figure  2.  Porous material model

    图  3  孔洞相对大小与孔洞汇合临界损伤度关系

    Figure  3.  Critical damage for void coalescence vs. relative difference in size between two voids

    图  4  孔洞间距离与孔洞汇合临界损伤度关系

    Figure  4.  Critical damage for void coalescence vs. distance between two voids

    图  5  孔洞汇合对孔洞增长的影响

    Figure  5.  Influences of void coalescence on void size

    图  6  孔洞汇合对损伤发展的影响

    Figure  6.  Influences of void coalescence on spall damage

    图  7  晶粒尺寸、孔洞汇合对自由面速度曲线的影响

    Figure  7.  Influences of void coalescence and grain size on free surface velocities

    图  8  孔洞汇合临界损伤度对自由面速度曲线的影响

    Figure  8.  Influences of critical damage for void coalescence on free surface velocities

    表  1  损伤材料内部孔洞数及孔洞大小的统计结果

    Table  1.   Damage statistics

    dg /μm N dv
    实验 计算 实验 计算
    30 236 11.460 38.1 12.17
    0.044(考虑汇合) 37.12(考虑汇合)
    60 363 3.236 22.7 22.36
    100 267 1.421 33.0 34.51
    200 111 0.566 55.1 42.60
    下载: 导出CSV
  • [1] Thomason P F. A view on ductile-fracture modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1105-1122. https://www.researchgate.net/publication/229518515_A_View_on_ductile-fracture_modelling
    [2] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
    [3] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. doi: 10.1016/0001-6160(84)90213-X
    [4] Benzerga A A. Micromechanics of coalescence in ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(6):1331-1362. doi: 10.1016/S0022-5096(01)00125-9
    [5] Gao X, Kim J. Modelling of ductile fracture: Significance of void coalescence[J]. International Journal of Solids and Structures, 2006, 43(20):6277-6293. doi: 10.1016/j.ijsolstr.2005.08.008
    [6] 黄筑平, 杨黎明, 潘客麟.材料的动态损伤和失效[J].力学进展, 1993, 23(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023

    Huang Zhuping, Yang Liming, Pan Keling. Dynamic damage and failure of materials[J]. Adavances in Mechanics, 1993, 3(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023
    [7] Pardoen T, Hutchinson J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. doi: 10.1016/S0022-5096(00)00019-3
    [8] Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence[J]. International Journal of Plasticity, 2000, 16(7):979-1015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b37e93469f2922e87ae03d47e0ed954
    [9] Seppala E T, Belak J, Rudd R E. Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals[J]. Physics Review: B, 2005, 71(6):064112. doi: 10.1103/PhysRevB.71.064112
    [10] Thomason P F. Ductile spallation fracture and the mechanics of void growth and coalescence under shock loading conditions[J]. Acta Materials, 1999, 47(13):3633-3646. doi: 10.1016/S1359-6454(99)00223-2
    [11] Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ France, 2003, 110:893-898. doi: 10.1051/jp4:20020807
    [12] Pardoen T, Scheyvaerts F, Tekoglu C, et al. Recent progress in micromechanics-based modeling of void coalescence[C]//The SEM Annual Conference. New Mexico, Albuquerque, USA, 2009.
    [13] Feng J P, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model[J]. Journal of Applied Physics, 1997, 81(6):2575-2578. doi: 10.1063/1.363921
    [14] Jacques N, Mercier S, Molinari A. Void coalescence in a porous solid under dynamic loading conditions[J]. International Journal of Fravture, 2012, 173(2):203-213. doi: 10.1007/s10704-012-9683-5
    [15] Hosokawa A, Wilkinson D S, Kang J D, et al. Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography[J]. International Journal of Fracture, 2013, 181(1):51-66. doi: 10.1007/s10704-013-9820-9
    [16] Hosokawa A, Wilkinson D S, Kang J D, et al. Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography[J]. Acta Materialia, 2013, 61(4):1021-1036. doi: 10.1016/j.actamat.2012.08.002
    [17] Llorca F, Roy G. Metallurgical investigation of dynamic damage in tantalum[C]//13th APS Topical Conference on Shock Compression of Condensed Matter. Portland, Oregon, 2003: 589-592.
    [18] Lii G T G, Bourne N K, Vecchio K S, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel[J]. International Journal of Fracture, 2010, 163(1):243-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad2df2e3a2e2ca5bf75978c7513272d1
    [19] Venkert A, Guduru P R, Ravichandran G. Effect of loading rate on fracture morphology in a high strength ductile steel[J]. Journal of Engineering Materials and Technology, 2001, 123(3):261-267. doi: 10.1115/1.1371231
    [20] Brown L M, Embury J D. The initiation and growth of void at second phase particles[C]//3rd International Conference on the Strength of Metals and Alloys. London, England, 1973: 164-169.
    [21] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011
    [22] Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics: B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601
    [23] Jacques N, Mercier S, Molinari A. Effects of microscale inertiaon dynamic ductile crack growth[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4):665-690. doi: 10.1016/j.jmps.2011.12.010
    [24] 张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
    [25] Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5821
  • HTML全文浏览量:  2431
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回