油气爆炸过程火焰燃烧模式的实验估计

张培理 杜扬

张培理, 杜扬. 油气爆炸过程火焰燃烧模式的实验估计[J]. 爆炸与冲击, 2016, 36(5): 688-694. doi: 10.11883/1001-1455(2016)05-0688-07
引用本文: 张培理, 杜扬. 油气爆炸过程火焰燃烧模式的实验估计[J]. 爆炸与冲击, 2016, 36(5): 688-694. doi: 10.11883/1001-1455(2016)05-0688-07
Zhang Peili, Du Yang. Experimental estimation of the combustion regime in the oil-gas explosion process[J]. Explosion And Shock Waves, 2016, 36(5): 688-694. doi: 10.11883/1001-1455(2016)05-0688-07
Citation: Zhang Peili, Du Yang. Experimental estimation of the combustion regime in the oil-gas explosion process[J]. Explosion And Shock Waves, 2016, 36(5): 688-694. doi: 10.11883/1001-1455(2016)05-0688-07

油气爆炸过程火焰燃烧模式的实验估计

doi: 10.11883/1001-1455(2016)05-0688-07
基金项目: 

国家自然科学基金项目 51276195

后勤工程学院青年基金项目 YQ16-420802

详细信息
    作者简介:

    张培理(1985-),男,博士研究生,zpl612323@163.com

  • 中图分类号: O389

Experimental estimation of the combustion regime in the oil-gas explosion process

  • 摘要: 首先分析讨论了油气爆炸过程中火焰燃烧模式的估计方法,然后在激波管内进行了低、中、高3次不同初始油气浓度条件下的油气爆炸实验,通过实验数据分别计算出了低、中、高初始油气浓度条件下油气爆炸在初期、中期和后期的丹姆克尔数和湍流雷诺数,最后依靠丹姆克尔数-湍流雷诺数图对低、中、高初始油气浓度条件下油气爆炸初期、中期和后期的火焰燃烧模式进行了定量估计。结果表明:低、中、高初始油气浓度条件下激波管油气爆炸过程初期、中期和后期的火焰燃烧模式均为漩涡内小火焰模式。
  • 图  1  湍流预混火焰的3种模式随DaRel0的分布

    Figure  1.  Distribution of the three turbulence premixed flame models based on values of Da and Rel0

    图  2  实验装置布置示意图

    Figure  2.  Arrangement of the experimental equipments

    图  3  流场速度和爆炸超压随时间的变化曲线

    Figure  3.  Variation curves of gas velocity and pressure vs. time

    图  4  3组电偶采集到的流场温度随时间的变化曲线

    Figure  4.  Temperature vs. time curves acquired by the three thermocouples

    图  5  油气爆炸过程火焰燃烧模式分布

    Figure  5.  Distribution of the flame regimes of oil-gas explosion process

    图  6  油气爆炸在148、152和156 ms时的火焰高速摄影照片

    Figure  6.  High speed photos of the flame when the time was 148, 152 and 156 ms

    表  1  各时刻激波管内气体流速、压力和已燃气体温度实验数据(ϕ=1)

    Table  1.   Flow velocity, pressure and burned gas temperature in the shock tube at different times (ϕ=1)

    t/ms v/(m·s-1) vrms* p/Pa Tmax/K
    50 55.82 34.62 98 530 1 127.39
    150 72.76 51.56 340 800 1 203.62
    250 29.14 7.94 486 190 1 324.05
    下载: 导出CSV

    表  2  参数BMB2ϕM取值

    Table  2.   Value of BM, B2 and ϕM

    燃料 ϕM BM/(cm·s-1) B2/(cm·s-1)
    甲醇 1.11 36.92 -140.51
    丙烷 1.08 34.22 -138.65
    异辛烷 1.13 26.32 -84.72
    RMFD-303 1.13 27.58 -78.34
    下载: 导出CSV

    表  3  各时刻的DaRel0计算值(ϕ=1)

    Table  3.   Calculated values of Da & Rel0 at different times (ϕ=1)

    t/ms Da Rel0
    50 0.19 4 603
    150 0.26 31 366
    250 21 4 012
    下载: 导出CSV

    表  4  各时刻激波管内气体流速、压力和已燃气体温度实验数据(ϕ=0.72)

    Table  4.   Flow velocity, pressure and burned gas temperature in the shock tube at different times (ϕ=0.72)

    t/ms v/(m·s-1) vrms* p/Pa Tmax/K
    50 65.13 45.45 115 120 1 158.42
    150 -5.74 25.42 322 410 1 201.77
    250 11.04 8.64 357 380 1 238.51
    下载: 导出CSV

    表  5  各时刻激波管内气体流速、压力和已燃气体温度实验数据(ϕ=1.28)

    Table  5.   Flow velocity, pressure and burned gas temperature in the shock tube at different times (ϕ=1.28)

    t/ms v/(m·s-1) vrms* p/Pa Tmax/K
    50 29.69 7.10 11 510 1 251.63
    150 86.91 64.32 227 780 1 296.15
    250 12.64 9.95 504 310 1 357.36
    下载: 导出CSV

    表  6  各时刻的DaRel0计算值

    Table  6.   Calculated values of Da & Rel0 at different times

    t/ms Da Rel0
    ϕ=0.72 ϕ=1.28 ϕ=0.72 ϕ=1.28
    50 0.03 1.31 6 767 93
    150 0.10 0.15 9 993 15 838
    250 0.31 1.76 3 589 4 970
    下载: 导出CSV
  • [1] Steinberg A M, Driscoll J F. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics[J]. Combustion and Flame, 2009, 156(12):2285-2306. doi: 10.1016/j.combustflame.2009.06.024
    [2] Shin D H, Lieuwen T. Flame wrinkle destruction processes in harmonically forced, laminar premixed flames[J]. Combustion and Flame, 2012, 159(11):3312-3322. doi: 10.1016/j.combustflame.2012.06.015
    [3] Yi Y, Geng L, Jing G. Experimental study on the fractal characteristic of methane explosion flame[J]. Safety Science, 2012, 50(4):679-683. doi: 10.1016/j.ssci.2011.08.052
    [4] Won S H, Windom B, Jiang B, et al. The role of low temperature fuel chemistry on turbulent flame propagation[J]. Combustion and Flame, 2014, 161(2):475-483. doi: 10.1016/j.combustflame.2013.08.027
    [5] Zhang M, Wang J, Wu J, et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(10):5176-5185. doi: 10.1016/j.ijhydene.2014.01.038
    [6] Mukaiyama K, Shibayama S, Kuwana K. Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames[J]. Combustion and Flame, 2013, 160(11):2471-2475. doi: 10.1016/j.combustflame.2013.05.017
    [7] Williams F A. Asymptotic methods in turbulent combustions[J]. AIAA Journal, 1986, 24:867-875. doi: 10.2514/3.9361
    [8] Abraham J, Williams F A, Bracco F V. A discussion of turbulent flame structure in premixed charges[R]. Warrendale, Pennsylvania, USA: Society of automotive engineers, 1985.
    [9] Zhang P, Du Y, Zhou Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1279-1284. doi: 10.1016/j.jlp.2013.07.003
    [10] Yang D, Li Z P, Hong O Y. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions[J]. Journal of Fire Protection Engineering, 2013, 23(3):226-238. doi: 10.1177/1042391513486464
    [11] 杨辉, 崔鑫, 郑昕等.管道中湍流强度及湍流积分尺度随时间的变化研究[J].安全与环境工程, 2013, 20(4):102-104. doi: 10.3969/j.issn.1671-1556.2013.04.023

    Yang H, Cui X, Zheng X, et al.Investigation of variation of turbulence intensity and turbulent integral scale with time in tube[J]. Safety and Environmental Engineering, 2013, 20(4):102-104. doi: 10.3969/j.issn.1671-1556.2013.04.023
    [12] Sak C, Liu R, Ting D S-K, et al. The role of turbulence length scale and turbulence intensity on forced convection from a heated horizontal circular cylinder[J]. Experimental Thermal and Fluid Science, 2007, 31(4):279-289. doi: 10.1016/j.expthermflusci.2006.04.007
    [13] Metghalchi M, Keck J C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature[J]. Combustion and Flame, 1982, 48:191-210. doi: 10.1016/0010-2180(82)90127-4
    [14] Spadling D B. Combustion and Mass Transfer[M]. New York: Pergamon, 1979:59.
    [15] Stephen R T. An introduction to combustion:concepts and application[M]. New York: The McGraw-Hill Companies, 2000:appendix C.
    [16] Ballal D R, Lefebvre A H. The structure and propagation of turbulent flames[J]. Proceedings of the Royoal Society of London, 1979, 344(1637):217-234. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.1890
    [17] Ballal D R, Lefebvre A H. The structure of a premixed turbulent flame[J]. Proceedings of the Royoal Society of London, 1979, 367(1730):253-280. http://www.jstor.org/stable/79908
    [18] Poinsot T, Candel S, Trouvé A. Applications of direct numerical simulation to premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1995, 21(6):531-576. doi: 10.1016/0360-1285(95)00011-9
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  4553
  • HTML全文浏览量:  1222
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-10
  • 修回日期:  2015-03-15
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回