闭孔泡沫铝的高温局部压入力学响应

李志斌

李志斌. 闭孔泡沫铝的高温局部压入力学响应[J]. 爆炸与冲击, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05
引用本文: 李志斌. 闭孔泡沫铝的高温局部压入力学响应[J]. 爆炸与冲击, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05
Li Zhibin. Indentation responses of closed-cell aluminum foams at elevated temperatures[J]. Explosion And Shock Waves, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05
Citation: Li Zhibin. Indentation responses of closed-cell aluminum foams at elevated temperatures[J]. Explosion And Shock Waves, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05

闭孔泡沫铝的高温局部压入力学响应

doi: 10.11883/1001-1455(2016)05-0734-05
基金项目: 

国家自然科学基金项目 11402299

国家自然科学基金项目 11132012

详细信息
    作者简介:

    李志斌(1985-),男,博士,lizhibin@nudt.edu.cn

  • 中图分类号: O342

Indentation responses of closed-cell aluminum foams at elevated temperatures

  • 摘要: 通过不同形状(平头和半球头)的压头在不同温度下对闭孔泡沫铝材料进行塑性压入实验,研究不同温度下闭孔泡沫铝的压入变形模式及载荷响应特性。并基于闭孔泡沫铝在高温下的准静态塑性压入载荷响应的实验结果,结合多种分析方法,(如量纲分析和有限元计算等),探索既考虑温度影响也包含压入深度影响的预测闭孔泡沫铝平头和半球头压入力学响应的经验公式。结果表明,本文得到的两种压头情况下的经验公式都能够较好地预测闭孔泡沫铝在不同温度下的压入力学响应。
  • 图  1  压入实验后的横截面图

    Figure  1.  Cross-sectional photographs of the specimens after indentation experiment

    图  2  不同温度下闭孔泡沫铝的压入载荷位移曲线

    Figure  2.  Load-displacement curves of closed-cell aluminum foam at different temperatures under indentation

    图  3  FEP压入载荷理论预测值与实验结果比较

    Figure  3.  Comparison between the FEP indentation load responses of closed-cell aluminum foam from experiments and predictions at different temperatures

    图  4  SEP压入载荷理论预测值与实验结果比较

    Figure  4.  Comparison between the SEP indentation load responses of closed-cell aluminum foam from experiments and predictions at different temperatures

  • [1] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Cambridge, UK: Cambridge University Press, 1997.
    [2] Ashby M F, Evans T, Fleck N, et al. Metal foams: A design guide[M]. USA: Society of Automotive Engineers, 2000.
    [3] Ruan D, Lu G, Ong L, et al. Triaxial compression of aluminium foams[J]. Composites Science and Technology, 2007, 67(6):1218-1234. doi: 10.1016/j.compscitech.2006.05.005
    [4] Ramamurty U, Kumaran M C. Mechanical property extraction through conical indentation of a closed-cell aluminum foam[J]. Acta Materialia, 2004, 52(1):181-189. doi: 10.1016/j.actamat.2003.09.004
    [5] Li Q M, Maharaj R N, Reid S R. Penetration resistance of aluminium foam[J]. International Journal of Vehicle Design, 2005, 37(2/3):175-184. doi: 10.1504/IJVD.2005.006706
    [6] Yan W, Pun C L. Spherical indentation of metallic foams[J]. Materials Science and Engineering: A, 2010, 527(13/14):3166-3175. https://www.sciencedirect.com/science/article/abs/pii/S0921509310001000
    [7] Olurin O B, Fleck N A, Ashby M F. Indentation resistance of an aluminium foam[J]. Scripta Materialia, 2000, 43(11):983-989. doi: 10.1016/S1359-6462(00)00519-4
    [8] Kumar P S, Ramachandra S, Ramamurty U. Effect of displacement-rate on the indentation behavior of an aluminum foam[J]. Materials Science and Engineering: A, 2003, 347(1/2):330-337. https://www.sciencedirect.com/science/article/abs/pii/S0921509302006081
    [9] Lu G, Shen J, Hou W, et al. Dynamic indentation and penetration of aluminium foams[J]. International Journal of Mechanical Sciences, 2008, 50(5):932-943. doi: 10.1016/j.ijmecsci.2007.09.006
    [10] Ramachandra S, Kumar P S, Ramamurty U. Impact energy absorption in an Al foam at low velocities[J]. Scripta Materialia, 2003, 49(8):741-745. doi: 10.1016/S1359-6462(03)00431-7
    [11] 王鹏飞, 徐松林, 李志斌, 等.高温下轻质泡沫铝动态力学性能实验研究[J].爆炸与冲击, 2014, 34(4):433-438. doi: 10.11883/1001-1455(2014)04-0433-06

    Wang Pengfei, Xu Songlin, Li Zhibin, et al. An experimental study on dynamic mechanical property of ultra-light aluminum foam under high temperatures[J]. Explosion and Shock Waves, 2014, 34(4):433-438. doi: 10.11883/1001-1455(2014)04-0433-06
    [12] 王鹏飞, 徐松林, 李志斌, 等.微结构对多孔材料应变率效应影响的机理研究[J].爆炸与冲击, 2014, 34(3):285-291. doi: 10.11883/1001-1455(2014)03-0285-07

    Wang Pengfei, Xu Songlin, Li Zhibin, et al. Effect of micro-structure on the strain rate of cellular material[J]. Explosion and Shock Waves, 2014, 34(3):285-291. doi: 10.11883/1001-1455(2014)03-0285-07
    [13] Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids.part Ⅰ: modeling[J]. International Journal of Mechanical Sciences, 2001, 43(3):681-699. doi: 10.1016/S0020-7403(00)00042-4
    [14] Andrews E W, Gioux G, Onck P, et al. Size effects in ductile cellular solids.part Ⅱ:experimental results[J]. International Journal of Mechanical Sciences, 2001, 43(3):701-13. doi: 10.1016/S0020-7403(00)00043-6
    [15] Tekoglu C, Gibson L J, Pardoen T, et al. Size effects in foams:experiments and modeling[J]. Progress in Materials Science, 2011, 56(2):109-138. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_049028ff4f555b014b76c180b3af34b2
    [16] 李志斌.闭孔泡沫铝及其夹芯结构的高温力学行为研究[D].合肥: 中国科学技术大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013218160.htm
    [17] Li Z B, Zheng Z J, Yu J L, et al. Effect of temperature on the indentation behavior of closed-cell aluminum foam[J]. Materials Science and Engineering: A, 2012, 550:222-226. doi: 10.1016/j.msea.2012.04.062
  • 加载中
图(4)
计量
  • 文章访问数:  4314
  • HTML全文浏览量:  1143
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-10
  • 修回日期:  2015-04-22
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回