RDX/HMX颗粒炸药落锤撞击点火-燃烧机理

吴艳青 鲍小伟 王明扬 黄风雷 张柱

吴艳青, 鲍小伟, 王明扬, 黄风雷, 张柱. RDX/HMX颗粒炸药落锤撞击点火-燃烧机理[J]. 爆炸与冲击, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08
引用本文: 吴艳青, 鲍小伟, 王明扬, 黄风雷, 张柱. RDX/HMX颗粒炸药落锤撞击点火-燃烧机理[J]. 爆炸与冲击, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08
Wu Yanqing, Bao Xiaowei, Wang Mingyang, Huang Fenglei, Zhang Zhu. Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact[J]. Explosion And Shock Waves, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08
Citation: Wu Yanqing, Bao Xiaowei, Wang Mingyang, Huang Fenglei, Zhang Zhu. Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact[J]. Explosion And Shock Waves, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08

RDX/HMX颗粒炸药落锤撞击点火-燃烧机理

doi: 10.11883/1001-1455(2017)02-0339-08
基金项目: 

国家自然科学基金项目 11572045

国防基础科研计划项目 B1520132004

山西省青年科学研究基金项目 2015021021

详细信息
    作者简介:

    吴艳青(1974—),女,博士,教授,博士生导师,wuyqing@bit.edu.cn

  • 中图分类号: O381

Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact

  • 摘要: 对单质炸药受低速撞击的力学和化学响应研究,是进行炸药敏感性评价的基础。利用配备了光学观测的落锤撞击装置,实现了频率为1.5×105 s-1的实时观测,不但可以区分样品的“爆”或“不爆”,而且可以获取RDX和HMX颗粒炸药受落锤低速撞击变形、破碎、溅射、点火和燃烧随时间演化的特征。结果表明:RDX颗粒是在液相中点火,而HMX颗粒在固相中点火; 燃烧反应前常常发生剧烈的溅射现象,溅射是由气相反应产物释放能量推动破碎的颗粒所致。对比了单个和单层颗粒炸药响应的特点,多个颗粒由于热点密集和破碎后相互作用,其燃烧反应比单个颗粒燃烧反应更剧烈。根据图像处理估算燃烧波传播速度,很好地表征了样品宏观燃烧反应的剧烈程度。
  • 图  1  扫描电镜观测的不同放大倍数下的RDX和HMX颗粒样品

    Figure  1.  Microscopic morphologies of RDX and HMX particles observed by scanning electron microscopy

    图  2  落锤加载装置及光路观测示意图

    Figure  2.  Schematic diagram showing the drop-weight loadingand optical measurement system

    图  3  比例尺基准标定

    Figure  3.  Scale calibration for calculating real size

    图  4  单个RDX颗粒受撞击的响应过程,落锤下落高度为15 cm

    Figure  4.  elected photographic frames for an individual RDX particlein response to a drop-weight impact with 15 cm height

    图  5  两个时刻燃烧区面积的变化

    Figure  5.  Burning area change from 560.00 μs to 566.67 μs

    图  6  单层(10颗)RDX颗粒受撞击后的点火燃烧图像,落锤下落高度为15 cm

    Figure  6.  Selected photographic frames for ten RDX particles in response to a drop-weight impact of 15 cm height

    图  7  两个时刻燃烧区面积的变化

    Figure  7.  Burning area change from 1 000.00 μs to 1 006.67 μs

    图  8  单个HMX颗粒受撞击的响应过程,落锤下落高度为15 cm

    Figure  8.  Selected photographic frames for an individual HMX particle in response to a drop-weight impact with 15 cm

    图  9  两个时刻燃烧区面积变化

    Figure  9.  Burning area change from 366.67 μs to 373.33 μs

    图  10  单层(10颗)HMX颗粒受撞击后的点火燃烧图像,落锤下落高度为15 cm

    Figure  10.  Selected photographic frames for ten HMX particles in response to a drop-weight impact with 15 cm

    图  11  两个时刻燃烧区面积变化

    Figure  11.  Burning area change from 533.33 μs to 540 μs

    表  1  火焰传播速度

    Table  1.   Propagation velocity of combustion flame

    实验方案 落锤高度/cm 火焰速度/(m·s-1)
    单个RDX颗粒 15 173.9
    单层多个RDX颗粒 15 235.4
    单个HMX颗粒 15 93.0
    单层多个HMX颗粒 15 308.9
    下载: 导出CSV
  • [1] Balzer J E, Proud W G, Walley S M.et al.High-speed photographic study of the drop-weight impact response of RDX-DOS mixtures[J].Combustion and Flame, 2003, 135(4):547-555. doi: 10.1016/j.combustflame.2003.08.009
    [2] Buntain G A, Mckinney T, Rivera T, et al.Decomposition of energetic materials on the drop-weight-impact machine[C]//Proceedings of the 9th Symposium (International) on Detonation.Portland, Oregon, United States, 1989: 1037-1043.
    [3] Rice B M, Hare J J.A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].Journal of Physical Chemistry A, 2002, 106(9):1770-1783. doi: 10.1021/jp012602q
    [4] Keshavarz M, Jaafari M.Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J].Propellants, Explosives, Pyrotechnics, 2006, 31(3):216-225. doi: 10.1002/(ISSN)1521-4087
    [5] Swallowe G M, Field J E.The ignition of a thin layer of explosive by impact:The effect of polymer particles[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 379(1777):389-408. doi: 10.1098/rspa.1982.0022
    [6] Swallowe G M, Field J E, Hutchinson C D.Impact experiments on thin layers of polymers and intermediate explosives[C]//Gupta Y M.Proceedings of the Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter.New York: Plenum Press, 1985: 891-898. doi: 10.1007/978-1-4613-2207-8_131
    [7] Heavens S N, Field J E.The ignition of a thin layer of explosive by impact[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 379(1612):77-93. http://www.jstor.org/stable/78552
    [8] Field J E, Swallowe G M, Heavens S N.Ignition mechanisms of explosives during mechanical deformation[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 382(1782):231-244. doi: 10.1098/rspa.1982.0099
    [9] Field J E, Palmer S J P, Pope P H, et al.Mechanical properties of PBXs and their behaviour during drop-weight impact[C]//Short J M.8th Symposium (International) on Detonation.White Oak, Maryland, USA: Naval Surface Weapons Center, 1985: 635-644.
    [10] Balzer J E, Field J E, Gifford M J, et al.High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX[J].Combustion and Flame, 2002, 130(4):298-306. doi: 10.1016/S0010-2180(02)00373-5
    [11] Hamdan S, Swallowe G M.The strain-rate and temperature dependence of the mechanical properties of polyetherketone and polyetheretherketone[J].Journal of Materials Science, 1996, 31(6):1415-1423. doi: 10.1007/BF00357847
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4381
  • HTML全文浏览量:  1328
  • PDF下载量:  397
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-10
  • 修回日期:  2016-01-21
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回