梯度多胞牺牲层的抗爆炸分析

蔡正宇 丁圆圆 王士龙 郑志军 虞吉林

蔡正宇, 丁圆圆, 王士龙, 郑志军, 虞吉林. 梯度多胞牺牲层的抗爆炸分析[J]. 爆炸与冲击, 2017, 37(3): 396-404. doi: 10.11883/1001-1455(2017)03-0396-09
引用本文: 蔡正宇, 丁圆圆, 王士龙, 郑志军, 虞吉林. 梯度多胞牺牲层的抗爆炸分析[J]. 爆炸与冲击, 2017, 37(3): 396-404. doi: 10.11883/1001-1455(2017)03-0396-09
Cai Zhengyu, Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yu Jilin. Anti-blast analysis of graded cellular sacrificial cladding[J]. Explosion And Shock Waves, 2017, 37(3): 396-404. doi: 10.11883/1001-1455(2017)03-0396-09
Citation: Cai Zhengyu, Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yu Jilin. Anti-blast analysis of graded cellular sacrificial cladding[J]. Explosion And Shock Waves, 2017, 37(3): 396-404. doi: 10.11883/1001-1455(2017)03-0396-09

梯度多胞牺牲层的抗爆炸分析

doi: 10.11883/1001-1455(2017)03-0396-09
基金项目: 

国家自然科学基金项目 11372307

国家自然科学基金项目 11372308

详细信息
    作者简介:

    蔡正宇(1990—),男,硕士研究生

    通讯作者:

    郑志军,zjzheng@ustc.edu.cn

  • 中图分类号: O382

Anti-blast analysis of graded cellular sacrificial cladding

  • 摘要: 运用一维非线性塑性冲击波模型和细观有限元模型对密度梯度多胞牺牲层的抗爆炸性能进行了分析。基于率无关的刚性-塑性硬化模型,建立了描述冲击波在多胞牺牲层中传播的控制方程,分别给出了正、负密度梯度多胞材料在指数型爆炸载荷作用下的响应特性。研究了可正好吸收爆炸能量的梯度多胞牺牲层的临界厚度与载荷强度、覆盖层质量、多胞材料的密度梯度等参数之间的关系,给出了以临界厚度和支撑端应力峰值为指标的密度梯度设计图。运用二维细观有限元模型验证了基于非线性塑性冲击波模型的抗爆炸分析的有效性。
  • 图  1  梯度多胞牺牲层的抗爆炸示意图

    Figure  1.  Schematic diagrams for the anti-blast analysis of graded cellular sacrificial claddings

    图  2  不同相对密度Voronoi蜂窝的准静态应力应变曲线和初始压溃应力和硬化参数的拟合结果

    Figure  2.  Quasi-static stress-strain curves and fitting results of initial crushing stress parameter and strain hardening for Voronoi honeycombs with different relative densities

    图  3  抗爆炸密度梯度多胞牺牲层的细观有限元模型

    Figure  3.  Cell-based finite element (FE) models of graded cellular sacrificial claddings for blast mitigation

    图  4  速度历史曲线

    Figure  4.  Time history of velocity

    图  5  变形图

    Figure  5.  Deformation patterns

    图  6  支撑端应力的历史曲线

    Figure  6.  Time history of stress at the support end

    图  7  临界厚度随初始加载峰值的变化

    Figure  7.  Critical thickness versus peak pressure of blast load

    图  8  临界厚度随覆盖层面积质量的变化关系

    Figure  8.  Critical thickness versus area mass of cover plate

    图  9  临界厚度和支撑端应力峰值随密度梯度参数的变化

    Figure  9.  Variations of critical thickness and peak stress at the support end with the gradient parameter

  • [1] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6):531-570. doi: 10.1016-S0734-743X(97)00016-X/
    [2] Liu Jiagui, Hou Bing, Lu Fangyun, et al. A theoretical study of shock front propagation in the density graded cellular rods[J]. International Journal of Impact Engineering, 2015, 80:133-142. doi: 10.1016/j.ijimpeng.2015.02.001
    [3] Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading: Part Ⅰ: Analytical studies[J]. International Journal of Impact Engineering, 2000, 24(9):957-973. doi: 10.1016/S0734-743X(00)00004-X
    [4] Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials[J]. Materials Science and Engineering A, 2009, 507(1):215-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1025aa7dec927f9329dc64fdf4c8c9b2
    [5] Zhang Jianjun, Wang Zhihua, Zhao Longmao. Dynamic response of functionally graded cellular materials based on the Voronoi model[J]. Composites Part B: Engineering, 2016, 85:176-187. doi: 10.1016/j.compositesb.2015.09.045
    [6] 吴鹤翔, 刘颖.梯度变化对密度梯度蜂窝材料力学性能的影响[J].爆炸与冲击, 2013, 33(2):163-168. doi: 10.3969/j.issn.1001-1455.2013.02.008

    Wu Hexiang, Liu Ying. Influences of density gradient variation on mechanical performances of density graded honeycomb materials[J]. Explosion and Shock Waves, 2013, 33(2):163-168. doi: 10.3969/j.issn.1001-1455.2013.02.008
    [7] Wang Xiaohai, Zheng Zhijun, Yu Jilin. Crashworthiness design of density-graded cellular metals[J]. Theoretical and Applied Mechanics Letters, 2013, 3(3):9-13. http://www.sciencedirect.com/science/article/pii/S2095034915302300
    [8] Zheng Jie, Qin Qinghua, Wang T J. Impact plastic crushing and design of density-graded cellular materials[J]. Mechanics of Material, 2016, 94:66-78. doi: 10.1016/j.mechmat.2015.11.014
    [9] Karagiozova D, Alves M. Propagation of compaction waves in cellular materials with continuously varying density[J]. International Journal of Solids and Structures, 2015, 71:323-337. doi: 10.1016/j.ijsolstr.2015.07.005
    [10] Hanssen A G, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels[J]. International Journal of Impact Engineering, 2002, 27(6):593-618. doi: 10.1016/S0734-743X(01)00155-5
    [11] Ma G W, Ye Z Q. Energy absorption of double-layer foam cladding for blast alleviation[J]. International Journal of Impact Engineering, 2007, 34(2):329-347. doi: 10.1016/j.ijimpeng.2005.07.012
    [12] Liao Shenfei, Zheng Zhijun, Yu Jilin, et al. A design guide of double-layer cellular claddings for blast alleviation[J]. International Journal of Aerospace and Lightweight Structures, 2013, 3(1):109-133. http://cn.bing.com/academic/profile?id=8455a8a9ca95f4476ff3f44e3e8e2ec4&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Sawle D R. Hypervelocity impact in thin sheets, semi-infinite targets at 15 km/s[J]. AIAA Journal, 1970, 8(7):1240-1244. doi: 10.2514/3.5879
    [14] 丁圆圆, 王士龙, 郑志军, 等.多胞牺牲层的抗爆炸分析[J].力学学报, 2014, 46(6):825-833. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703003.htm

    Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6):825-833. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703003.htm
    [15] Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3):386-401. doi: 10.1115/1.1629109
    [16] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅱ: Shock theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2206-2230. doi: 10.1016/j.jmps.2005.05.003
    [17] Wang Shilong, Ding Yuanyuan, Wang Changfeng, et al. Dynamic material parameters of closed-cell foams under high-velocity impact[J]. International Journal of Impact Engineering, 2017, 99:111-121. doi: 10.1016/j.ijimpeng.2016.09.013
    [18] 王长峰, 郑志军, 虞吉林.泡沫杆撞击刚性壁的动态压溃模型[J].爆炸与冲击, 2013, 33(6):587-593. doi: 10.3969/j.issn.1001-1455.2013.06.005

    Wang Changfeng, Zheng Zhijun, Yu Jilin. Dynamic crushing models for a foam rod striking a rigid wall[J]. Explosion and Shock Waves, 2013, 33(6):587-593. doi: 10.3969/j.issn.1001-1455.2013.06.005
    [19] Zheng Zhijun, Yu Jilin, Li Jianrong. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4):650-664. http://www.sciencedirect.com/science/article/pii/S0734743X05000795
  • 加载中
图(9)
计量
  • 文章访问数:  7000
  • HTML全文浏览量:  3486
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回