MDYB-3有机玻璃在不同应变率下的一维屈服行为

邓小秋 李志强 周志伟 王志华 姚小虎

邓小秋, 李志强, 周志伟, 王志华, 姚小虎. MDYB-3有机玻璃在不同应变率下的一维屈服行为[J]. 爆炸与冲击, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08
引用本文: 邓小秋, 李志强, 周志伟, 王志华, 姚小虎. MDYB-3有机玻璃在不同应变率下的一维屈服行为[J]. 爆炸与冲击, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08
Deng Xiao-qiu, Li Zhi-qiang, Zhou Zhi-wei, Wang Zhi-hua, Yao Xiao-hu. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates[J]. Explosion And Shock Waves, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08
Citation: Deng Xiao-qiu, Li Zhi-qiang, Zhou Zhi-wei, Wang Zhi-hua, Yao Xiao-hu. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates[J]. Explosion And Shock Waves, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08

MDYB-3有机玻璃在不同应变率下的一维屈服行为

doi: 10.11883/1001-1455-(2015)03-0312-08
基金项目: 国家自然科学基金项目(11072166);国家国际科技合作专项项目(2011DFA53080);山西省高等学校优秀青年学术带头人基金项目(2011)
详细信息
    作者简介:

    邓小秋(1988—), 男, 硕士研究生

    通讯作者:

    李志强, lizhiqiang@tyut.edu.cn

  • 中图分类号: O347.3

One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates

  • 摘要: 对MDYB-3有机玻璃进行了多组不同应变率(10-3~3 000 s-1)下的压缩实验, 得到准静态下的屈服应力与动态下的峰值应力。沿其增强与面内2个方向进行准静态压缩实验, 以分析定向拉伸对屈服应力的影响, 修正了Ree-Eyring模型与Cooperative模型以描述定向有机玻璃的屈服行为。采用Johnson-Cook模型描述屈服后的黏塑性行为。结果表明Cooperative屈服模型比Ree-Eyring屈服模型更接近实验结果, 且能准确描述准静态屈服应力。动态压缩下的峰值应力为失效应力, 说明试样在1 500 s-1以上应变率下未达到屈服应力时已经发生破坏。Johnson-Cook模型对于单条曲线拟合良好, 但无法准确描述材料的应变率相关性。
  • 图  1  实验前后MDYB-3有机玻璃的压缩变形形态

    Figure  1.  Deformation of MDYB-3 PMMA before and after compression tests

    图  2  实验所得有机玻璃应力应变曲线

    Figure  2.  The stress of PMMA varied with strain in tests

    图  3  修正屈服模型的准静态屈服应力与应变率对数曲线

    Figure  3.  The quasi-static stress of the two revised yield models varied with the logarithmic strain rate

    图  4  修正屈服模型的动态应力与应变率对数曲线

    Figure  4.  The dynamic stress of the two revised yield models varied with the logarithmic strain rate

    图  5  塑性起点为弹性极限的修正Johnson-Cook公式曲线

    Figure  5.  Revised Johnson-Cook model with the plastic starting point of elastic limit

    图  6  塑性起点为屈服极限的修正Johnson-Cook公式曲线

    Figure  6.  Revised Johnson-Cook model with the plastic starting point of yield limit

  • [1] Li Zhou-hua, Lambros J. Strain rate effects on the thermomechanical behavior of polymers[J]. International Journal of Solids and Structures, 2001, 38(20): 3549-3562. doi: 10.1016/S0020-7683(00)00223-7
    [2] Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
    [3] Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates[J]. The Journal of Chemical Physics, 1936, 4(4): 283-291. doi: 10.1063/1.1749836
    [4] Taikyue R, Eyring H. Theory of non-Newtonian flow: Ⅰ: Solid plastic system[J]. Journal of Applied Physics, 1955, 26(7): 793-800. doi: 10.1063/1.1722098
    [5] Haward R N, Thackray G. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics[J]. Proceedings of the Royal Society of London A, 1968, 302(1471): 453-472.
    [6] Argon A S. A theory for the low-temperature plastic deformation of glassy polymers[J]. Philosophical Magazine, 1973, 28(4): 839-865. doi: 10.1080/14786437308220987
    [7] Boyce M C, Parks D M, Argon A S. Large inelastic deformation of glassy polymers: PartⅠ: Rate dependent constitutive model[J]. Mechanics of Materials, 1988, 7(1): 15-33. doi: 10.1016/0167-6636(88)90003-8
    [8] Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412. doi: 10.1016/0022-5096(93)90013-6
    [9] Wu P D, Giessen E V D. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(3): 427-456. doi: 10.1016/0022-5096(93)90043-F
    [10] Anand L, Gurtin M E. A theory of amorphous solids undergoing large deformations, with application to polymeric glasses[J]. International Journal of Solids and Structures, 2003, 40(6): 1465-1487. doi: 10.1016/S0020-7683(02)00651-0
    [11] 王礼立, Pluvinage G, Labibes K.冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J].宁波大学学报:理工版, 1995, 8(3): 30-57.

    Wang Li-li, Puvinage G, Labibes K. The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University: Natural Science and Engineering Edition, 1995, 8(3): 30-57.
    [12] 吴衡毅, 马钢, 夏源明. PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学, 2005, 20(2): 193-199.

    Wu Heng-yi, Ma Gang, Xia Yuan-ming. Experimental study on mechanical properties of PMMA under unidirectional tensile at low and intermediate strain rates[J]. Journal of Experimental Mechanics, 2005, 20(2): 193-199.
    [13] Bauwens C C, Bauwens J C, Homès G. Tensile yield-stress behavior of glassy polymers[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1969, 7(4): 735-742. doi: 10.1002/pol.1969.160070411
    [14] Fotheringham D G, Cherry B W. The role of recovery forces in the deformation of linear polyethylene[J]. Journal of Materials Science, 1978, 13(5): 951-964. doi: 10.1007/BF00544690
    [15] Povolo F, Hermida E B. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA[J]. Journal of Applied Polymer Science, 1995, 58(1): 55-68. doi: 10.1002/app.1995.070580106
    [16] Richeton J, Ahzi S, Daridon L, et al. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures[J]. Polymer, 2005, 46(16): 6035-6043. doi: 10.1016/j.polymer.2005.05.079
    [17] Richeton J, Ahzi S, Vecchio K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress[J]. International Journal of Solids and Structures, 2006, 43(7/8): 2318-2335.
    [18] 董绍胜, 魏月贞, 白永平, 等.耐热有机玻璃的研制[J].高分子材料科学与工程, 2000, 16(1): 173-175.

    Dong Shao-sheng, Wei Yue-zhen, Bai Yong-ping, et al. Study on the heat resistant PMMA[J]. Polymer Materials Science and Engineering, 2000, 16(1): 173-175.
    [19] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究[J].爆炸与冲击, 2003, 23(2): 188-192. http://www.cqvip.com/Main/Detail.aspx?id=7672613

    Hu Chang-ming, He Hong-liang, Hu Shi-sheng. A study on dynamic mechancial behaviors of 45 steel[J]. Explosion and Shock Waves, 2003, 23(2): 188-192. http://www.cqvip.com/Main/Detail.aspx?id=7672613
    [20] 张宏建, 温卫东, 崔海涛, 等.不同温度下IC10合金的本构关系[J].航空学报, 2008, 29(2): 499-504.

    Zhang Hong-jian, Wen Wei-dong, Cui Hai-tao, et al. Constitutive analysis of alloy IC10 at different temperatures[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(2): 499-504.
    [21] 林木森, 庞宝君, 张伟, 等. 5A06铝合金的动态本构关系实验[J].爆炸与冲击, 2009, 29(3): 306-311.

    Lin Mu-sen, Pang Bao-jun, Zang Wei, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy[J]. Explosion and Shock Waves, 2009, 29(3): 306-311.
    [22] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics. Netherlands: International Ballistics Committee, 1983: 541-547.
    [23] 《中国航空材料手册》编辑委员会.中国航空材料手册[M]. 2版.北京: 中国标准出版社, 2001.
  • 加载中
图(6)
计量
  • 文章访问数:  4373
  • HTML全文浏览量:  514
  • PDF下载量:  836
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-11
  • 修回日期:  2014-03-04
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回